
1

Objective
• More for loop
• Designing for Change
• Using Functions

Jan 25, 2019 Sprenkle - CSCI111 1

Review
• Which lab did you submit today?

ØHow many have you completed?
• What statement do we use to repeat something?
• What are the possible ways to use the range

function?
ØWhat do they mean?

Jan 25, 2019 Sprenkle - CSCI111 2

2

Practicing for Loops
Ø A)

Ø B)

ØC)

Jan 25, 2019 Sprenkle - CSCI111 3

10
9
8
7
…
1
Blast off!

I had the time of my life
And I never felt this way before
And I swear this is true
And I owe it all to you

1
2
3
4
Tell me that you
love me more

What is getting repeated?
How many times?

3 times,
followed by Dirty bit

Jan 25, 2019 Sprenkle - CSCI111 4

Programming Practice
• Add 5 numbers, inputted by the user

ØAfter implementing, simulate running on computer

• How would have implemented this last week?
ØHow can we improve that based on our new

knowledge?

sum5.py

3

Jan 25, 2019 Sprenkle - CSCI111

Generalizing Solution:
Accumulator Design Pattern

1. Initialize accumulator variable
2. Loop until done

ØUpdate the value of the accumulator
3. Display result

5

DESIGNING FOR CHANGE

Jan 25, 2019 Sprenkle - CSCI111 6

4

Designing for Change
• What are we likely to change in the program?
• How can we make the program easier to

change?

Jan 25, 2019 Sprenkle - CSCI111 7

Constants
• Special variables whose values are defined once

and never changed
ØBy convention, not enforced by interpreter

• By convention
ØA constant’s name is all caps
Ø Typically defined at top of program à easy to find,

change

• Examples:

Jan 25, 2019 Sprenkle - CSCI111 8

NUM_INPUTS = 5
MIN_VALUE = 0

Never assigned values in
remainder of program

5

Jan 25, 2019 Sprenkle - CSCI111

Programming Practice
• Sum x numbers inputted by the user

sum_with_constant.py
9

Jan 25, 2019 Sprenkle - CSCI111

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

10

6

Motivating Functions

• PB&J: spreading PB, spreading jelly

Ø Similar processes

ØWant to do many times

Ø Simplify by saying “spread” rather than saying “move

the knife back and forth, condiment side down,

against the bread until you get X inches of …”

• Benefits

ØReuse, reduce code

Ø Easier to read, write

Jan 25, 2019 Sprenkle - CSCI111 11

Example
• How would you find the area of this shape?

Jan 25, 2019 Sprenkle - CSCI111 12

7

Example
• How would you find the area of this shape?
• Algorithm Possibilities:

Ø Total Area = ½ bt ht + wr*hr

Ø Total Area = Area of triangle + Area of rectangle

Jan 25, 2019 Sprenkle - CSCI111 13

Which algorithm is easier to understand?

For (most) humans,
words and abstraction of ideas

are easier to understand

• Functions perform some task
ØMay take arguments/parameters
ØMay return a value that can be used in assignment

function

Jan 25, 2019 Sprenkle - CSCI111 14

Functions

Input
(arguments)

Output
(return value)

What does it do?
How does it do it?

We don’t know how it does it,
but it’s okay because it doesn’t matter

àas long as it works!

8

Jan 25, 2019 Sprenkle - CSCI111 15

Functions

• Syntax:
Øfunc_name(arg0, arg1, …, argn)

• Depending on the function, arguments may or
may not be required
Ø [] indicate an optional argument

• Semantics: depend on the function

Argument list (input)

functionInput
(arguments)

Output
(return value)

Jan 25, 2019 Sprenkle - CSCI111 16

Built-in Functions
• Python provides some built-in functions for

common tasks

•input([prompt])
Ø If prompt is given as an argument, prints the prompt

without a newline/carriage return
Ø If no prompt, just waits for user’s input
ØReturns user’s input (up to “enter”) as a string

Known as function’s signature
Template for how to “call” function

Optional argument

9

Description of print
•print(value, …, sep=' ',
end='\n', file=sys.stdout)

ØPrint object(s) to the stream file, separated by
sep and followed by end.

ØBoth sep and end must be strings; they can also be
None, which means to use the default values. If no
object is given, print() will just write end.

Jan 25, 2019 Sprenkle - CSCI111 17
http://docs.python.org/py3k/
library/functions.html#print

Meaning: default values for sep and end
are ' ' and '\n', respectively

Important later

Description of print
•print(value, …, sep=' ',
end='\n', file=sys.stdout)

• Examples

Jan 25, 2019 Sprenkle - CSCI111 18

Meaning: default values for sep and end
are ' ' and '\n', respectively

Important later

print("Hi", "there", "class", sep='; ')
print("Put on same", end='')
print("line")

Hi; there; class
Put on samelineOutput:

print_examples.py

10

More Examples of Built-in Functions

Jan 25, 2019 Sprenkle - CSCI111 19

Interpreter

Function Signature Description
round(x[,n]) Return the float x rounded to n

digits after the decimal point
If no n, round to nearest int

abs(x) Returns the absolute value of x

type(x) Return the type of x

pow(x, y) Returns xy

Jan 25, 2019 Sprenkle - CSCI111 20

Using Functions
• Example use: Alternative to exponentiation

Ø Objective: compute -32

Ø Python alternatives:
• pow(-3, 2)
• (-3) ** 2

• We often use functions in assignment statements
Ø Function does something
Ø Save the output of function (what is returned in a

variable

function_example.py

roundedX = round(x)

11

Jan 25, 2019 Sprenkle - CSCI111 21

Python Libraries
• Beyond built-in functions, Python has a rich
library of functions and definitions available
Ø The library is broken into modules
ØA module is a file containing Python definitions and

statements
• Example modules

Ømath — math functions
Ørandom – functions for generating random numbers
Øos — operating system functions
Ønetwork — networking functions

Jan 25, 2019 Sprenkle - CSCI111 22

math Module

• Defines constants (variables) for pi (i.e., p) and
e
Ø These values never change, i.e., are constants
ØRecall: we name constants with all caps

• Defines functions such as

Function What it Does
ceil(x) Return the ceiling of x as a float

exp(x) Return e raised to the power of x
sqrt(x) Return the square root of x

12

Jan 25, 2019 Sprenkle - CSCI111 23

Using Python Libraries

• To use the definitions in a module, you must first
import the module
Ø Example: to use the math module’s definitions,

use the import statement: import math
Ø Typically import statements are at top of program

• To find out what a module contains, use the
help function
Ø Example within Python interpreter:

>>> import math
>>> help(math)

Jan 25, 2019 Sprenkle - CSCI111 24

Using Definitions from Modules

• Prepend constant or function with
modulename.
Ø Examples for constants:
•math.pi
•math.e

Ø Examples for functions:

•math.sqrt

module_example.py

13

Jan 25, 2019 Sprenkle - CSCI111 25

Alternative Import Statements

• Examples:
Øfrom math import pi

• Means “import pi from the math module”
Øfrom math import *

• Means “import everything from the math module”

• With this import statement, don’t need to
prepend module name before using functions
Ø Example: e**(1j*pi) + 1

from <module> import <defn_name>

Jan 25, 2019 Sprenkle - CSCI111 26

Benefits of Using Python Libraries/Modules

• Don’t need to rewrite code

• If it’s in a module, it is very efficient (in terms of
computation speed and memory usage)

14

Jan 25, 2019 Sprenkle - CSCI111 27

Finding Modules To Use
• How do I know if functionality that I want

already exists?
ØPython Library Reference:
http://docs.python.org/py3k/library/

• For the most part, in the beginning you will write
most of your code from scratch

RANDOM MODULE

Jan 25, 2019 Sprenkle - CSCI111 28

15

Jan 25, 2019 Sprenkle - CSCI111 29

random module

• Python provides the random module to
generate pseudo-random numbers

• Why “pseudo-random”?
ØGenerates a list of random numbers and grabs the

next one off the list

ØA seed is used to initialize the random number
generator, which decides which list to use
• By default, the current time is used as the seed

List of Lists of Random Numbers

Jan 25, 2019 Sprenkle - CSCI111 30

Seed List of Random Numbers

1 0.1343642441 0.8474337369 0.763774619 0.2550690257 ...

2 0.9560342719 0.9478274871 0.0565513677 0.0848719952 ...

3 0.2379646271 0.5442292253 0.3699551665 0.6039200386 ...

4 0.2360480897 0.1031660342 0.3960582426 0.1549722708 ...

… … ...

16

Jan 25, 2019 Sprenkle - CSCI111 31

Some random Functions

•random()
ØReturns the next random floating point number in

the range [0.0, 1.0)

•randint(a, b)
ØReturn a random integer N such that a ≤ N ≤ b

random_test.py

import random

#random.seed(1) # module.function()

for x in range(10):
print(random.random())

Jan 25, 2019 Sprenkle - CSCI111 32

VA Lottery: Pick 4
• To play: pick 4 numbers between 0 and 9
• To win: select the numbers that are selected by

the magic ping-pong ball machine

• Your job: Simulate the magic ping-pong ball
machines
ØDisplay the number on one line

pick4.py

17

Jan 25, 2019 Sprenkle - CSCI111 33

Programming Building Blocks
• Adding to your tool set
• We can combine them to create

more complex programs
Ø Solutions to problems

Assign.

print

import

for

input

Looking Ahead
• Pre Lab 3, Lab 3 next week

Jan 25, 2019 Sprenkle - CSCI111 34

