
1

Objective
• Using functions
• Animation
• Defining functions

Jan 28, 2019 Sprenkle - CSCI111 1

Review
• What new design pattern did we discuss?

ØWhat are its steps?
• What is a function?
• What are some variations in how we use the

print function?
• How do we use another module in our program?

Ø Two ways – what are the implications of each way

• How do we find out what a module provides?
• What are two modules we discussed?

Jan 28, 2019 Sprenkle - CSCI111 2

2

Jan 28, 2019 Sprenkle - CSCI111 3

Review: Functions

• Syntax:
Øfunc_name(arg0, arg1, …, argn)

• Depending on the function, arguments may or
may not be required
Ø [] indicate an optional argument

• Semantics: depend on the function

Argument list (input)

function
Input

(arguments)
Output

(return value)

Jan 28, 2019 Sprenkle - CSCI111 4

Review: Using Python Libraries
• To use the definitions in a module, you must first
import the module
Ø Example: to use the math module’s definitions,

use the import statement: import math
Ø Typically import statements are at top of program

• To find out what a module contains, use the
help function
Ø Example within Python interpreter:

>>> import math
>>> help(math)

3

Jan 28, 2019 Sprenkle - CSCI111 5

Review:
Benefits of Using Python Libraries/Modules
• Don’t need to rewrite code

• If it’s in a module, it is very efficient (in terms of
computation speed and memory usage)

Jan 28, 2019 Sprenkle - CSCI111 6

VA Lottery: Pick 4

• To play: pick 4 numbers between 0 and 9,
inclusive

• To win: select the numbers that are selected by
the magic ping-pong ball machine

• Your job: Simulate the magic ping-pong ball
machines
ØDisplay the number on one line

pick4.py

4

Jan 28, 2019 Sprenkle - CSCI111 7

Programming Building Blocks
• Adding to your tool set
• We can combine them to create

more complex programs
Ø Solutions to problems

Assign.

print

import

for

input

ANIMATION

Jan 28, 2019 Sprenkle - CSCI111 8

5

Review: Circle Shift
• Move a circle to the position clicked by the user

ØRepeat three times

Jan 28, 2019 Sprenkle - CSCI111 9circleShift.py

Animation
• Use combinations of the method move and the

function sleep
ØNeed to sleep so that humans can see the graphics

moving
ØComputer would process the moves too fast!

• sleep is part of the time module
Ø takes a float parameter representing seconds and

pauses for that amount of time

Jan 28, 2019 Sprenkle - CSCI111 10

animate.py

6

Problem: Animate Moving to User Click
• In X steps, move from the circle's current

location to the location clicked by user

Jan 28, 2019 Sprenkle - CSCI111 11circleShiftAnim.py

Examples of Animation
• From Previous Classes

Jan 28, 2019 Sprenkle - CSCI111 12

7

DEFINING OUR OWN FUNCTIONS
Looking behind the curtain…

Jan 28, 2019 Sprenkle - CSCI111 13

Functions

• We've used functions
ØBuilt-in functions: input, eval
Ø Functions from modules, e.g., math and random

• Benefits
ØReuse, reduce code

Ø Easier to read, write (because of abstraction)

Jan 28, 2019 Sprenkle - CSCI111 14

Today, we'll learn how to
define our own functions!

8

Review: Functions
• Function is a black box

Ø Implementation doesn't matter
ØOnly care that function generates appropriate

output, given appropriate input
• Example:

ØDidn't care how input function was implemented
ØUse: user_input = input(prompt)

Jan 28, 2019 Sprenkle - CSCI111 15

prompt user_input
Saved output in a variable

inputInput
(arguments)

Output
(return value)

Creating Functions
• A function can have

Ø 0 or more inputs
Ø 0 or 1 outputs

• When we define a function, we know its inputs
and if it has output

Jan 28, 2019 Sprenkle - CSCI111 16

functionInput
(arguments)

Output
(return value)

9

Writing a Function
• We want a function that moves a circle to a new

location
• Recall:

Jan 28, 2019 Sprenkle - CSCI111 17

create the circle in the center of the window and draw it
midPoint = Point(canvas.getWidth()/2, canvas.getHeight()/2)
myCircle = Circle(midPoint, CIRCLE_RADIUS)
myCircle.draw(canvas)

get where the user clicked
new_point = canvas.getMouse()

Move the circle to where the user clicks
centerPoint = myCircle.getCenter()

dx = new_point.getX() - centerPoint.getX()
dy = new_point.getY() - centerPoint.getY()

myCircle.move(dx,dy)

Make a Function to Do That

Jan 28, 2019 Sprenkle - CSCI111 18

def moveCircle(circle, newCenter):
"""
Move the given Circle circle to be centered
at the Point newCenter
"""
centerPoint = circle.getCenter()

diffInX = newCenter.getX() - centerPoint.getX()
diffInY = newCenter.getY() - centerPoint.getY()

circle.move(diffInX, diffInY)

The circle to move The point to move the circle to
Parameters/inputs:

10

Make a Function to Do That

Jan 28, 2019 Sprenkle - CSCI111 19

def moveCircle(circle, newCenter):
"""
Move the given Circle circle to be centered
at the Point newCenter
"""
centerPoint = circle.getCenter()

diffInX = newCenter.getX() - centerPoint.getX()
diffInY = newCenter.getY() - centerPoint.getY()

circle.move(diffInX, diffInY)

Keyword
Function

Name
Input Name/
Parameter

Bo
dy

(o
r f

un
ct

io
n

de
fin

iti
on

)

Function header

Function documentation

Defining a Function
• Gives a name to some code that you’d like to be

able to call again
• Analogy:

ØDefining a function: saving name, phone number,
etc. in your contacts

ØCalling a function: calling that number

Jan 28, 2019 Sprenkle - CSCI111 20

11

Parameters
• The inputs to a function are called parameters or
arguments, depending on the context

• When calling/using functions, arguments must
appear in same order as in the function header
Ø Example: round(x, n)

• x is the float to round
• n is int of decimal places to round x to

Jan 28, 2019 Sprenkle - CSCI111 21

Parameters
• Formal Parameters are the variables named in

the function definition
• Actual Parameters or Arguments are the

variables or literals that really get used when the
function is called.

Jan 28, 2019 Sprenkle - CSCI111 22

Formal
Actual

Defined: def round(x, n) :
Use: roundCelc = round(celcTemp, 3)

Formal & actual parameters must match
in order, number, and type!

12

Calling the Function

Jan 28, 2019 Sprenkle - CSCI111 23

create the circle in the center of the window and draw it
midPoint = Point(canvas.getWidth()/2, canvas.getHeight()/2)
myCircle = Circle(midPoint, CIRCLE_RADIUS)
myCircle.draw(win)

get where the user clicked
new_point = canvas.getMouse()

The circle to move The point to move the circle to

Compare the code…

circleShiftWithFunction.py

Writing a Function
• Let’s look at one more example

• I want a function that averages two numbers

Jan 28, 2019 Sprenkle - CSCI111 24

•What is the input to this function?
•What is the output from this function?

13

Writing a Function
• I want a function that averages two numbers
• What is the input to this function?

Ø The two numbers
• What is the output from this function?

Ø The average of those two numbers, as a float

Jan 28, 2019 Sprenkle - CSCI111 25

These are key questions to ask yourself when
designing your own functions.

• Inputs: What are the parameters?
• Output: What is getting returned?

Averaging Two Numbers

• Input: the two numbers
• Output: the average of two numbers

Jan 28, 2019 Sprenkle - CSCI111 26

average2input output
averagenum1,

num2

14

Syntax of Function Definition

Jan 28, 2019 Sprenkle - CSCI111 27

def average2(num1, num2):
"""
Parameters: two numbers to be averaged.
Returns the average of two numbers
"""

average = (num1 + num2)/2
return average

Keyword Function
Name

Input Name/
Parameter

Bo
dy

(o
r f

un
ct

io
n

de
fin

iti
on

)

Keyword:
How to give output

Function header

Output

Function documentation

Calling your own functions

avg = average2(100, 50)

Jan 28, 2019 Sprenkle - CSCI111 28

Output is
assigned to avg

Function
Name

Input

Same as calling someone else’s functions …

average2.py

15

Functions: Similarity to Math
• In math, a function definition looks like:

• Plug values in for x

• Example:
Ø f(3) = 32 + 2 = 11
Ø 3 is your input, assigned to x
Ø 11 is output

Jan 28, 2019 Sprenkle - CSCI111 29

f(x) = x2 + 2

Function Output
• When the code reaches a statement like

return x
Ø The function stops executing
Øx is the output returned to the place where the

function was called
• For functions that don't have explicit output,
return does not have a value with it, e.g.,

• Optional: don't need to have return
Ø Function automatically returns at the end

Jan 28, 2019 Sprenkle - CSCI111 30

return

16

Flow of Control
• When program calls a function, the program

jumps to the function and executes it
• After executing the function, the program

returns to the same place in the calling code
where it left off

Jan 28, 2019 Sprenkle - CSCI111 31

Make conversions
dist1 = 100
miles1 = metersToMiles(dist1)

Value of dist1 (100) is assigned to meters
Calling code: def metersToMiles(meters) :

M2MI=.0006215
miles = meters * M2MI
return miles

average2.py

Looking Ahead
• Pre Lab 3 - tomorrow
• Lab 3 – due Friday
• BI – due Friday

Jan 28, 2019 Sprenkle - CSCI111 32

