
1

Objectives
• Defining your own functions

ØControl flow
Ø Scope, variable lifetime
ØDocumentation
Ø Testing

Jan 30, 2019 Sprenkle - CSCI111 1

Review
• What are benefits of functions?
• How do we add animation to our graphics

programs?
• How do we create our own functions?

ØHow do we indicate that our function requires input?
ØHow do we say that our function has output?

• How do we call a function we created?

Jan 30, 2019 Sprenkle - CSCI111 2

2

Function Definition Example without Output

Jan 30, 2019 Sprenkle - CSCI111 3

def moveCircle(circle, newCenter):
"""
Move the given Circle circle to be centered
at the Point newCenter
"""
centerPoint = circle.getCenter()

diffInX = newCenter.getX() - centerPoint.getX()
diffInY = newCenter.getY() - centerPoint.getY()

circle.move(diffInX, diffInY)

Keyword
Function

Name
Input Name/
Parameter

Bo
dy

(o
r f

un
ct

io
n

de
fin

iti
on

)

Function header

Function documentation

Function Definition with Output

Jan 30, 2019 Sprenkle - CSCI111 4

def average2(num1, num2):
"""
Parameters: two numbers to be averaged.
Returns the average of two numbers
"""

average = (num1 + num2)/2
return average

Keyword Function
Name

Input Name/
Parameter

Bo
dy

(o
r f

un
ct

io
n

de
fin

iti
on

)

Keyword:
How to give output

Function header

Output

Function documentation

3

Functions: Similarity to Math
• In math, a function definition looks like:

• Plug values in for x

• Example:
Ø f(3) = 32 + 2 = 11
Ø 3 is your input, assigned to x
Ø 11 is output

Jan 30, 2019 Sprenkle - CSCI111 5

f(x) = x2 + 2

Function Output
• When the code reaches a statement like

return x
Ø The function stops executing
Øx is the output returned to the place where the

function was called
• For functions that don't have explicit output,
return does not have a value with it, e.g.,

• Optional: don't need to have return
Ø Function automatically returns at the end

Jan 30, 2019 Sprenkle - CSCI111 7

return

4

Flow of Control
• When program calls a function, the program

jumps to the function and executes it
• After executing the function, the program

returns to the same place in the calling code
where it left off

Jan 30, 2019 Sprenkle - CSCI111 8

Make conversions
dist1 = 100
miles1 = metersToMiles(dist1)

Value of dist1 (100) is assigned to meters
Calling code: def metersToMiles(meters) :

M2MI=.0006215
miles = meters * M2MI
return miles

average2.py

Using print vs return
• print is for displaying information
• Don’t always want to display the output of a

function
• return gives us more flexibility about what we

do with the output from a function
• Example:

Jan 30, 2019 Sprenkle - CSCI111 9

avg = average2(num1, num2)
print("The average is", round(avg, 2))

We don’t want the “raw” value from average2 displayed
when the function is called.
We want to process that value so that we only display it to
two decimal places (and another place we call it, we want to
round to 4 decimal places).

5

return vs print
• In general, whenever we want output from a

function, we’ll use return
Ø More flexible, reusable function
Ø Let whoever called the function figure out what to

display

• Use print for
Ø Debugging your function (then remove)

• Otherwise, unintended side effect of calling the function
Ø When you have a function that is supposed to display

something
• Sometimes, that is what you want.

Jan 30, 2019 Sprenkle - CSCI111 10

Function Input and Output
• What does this function do?
• What is its input? What is its output?

Jan 30, 2019 Sprenkle - CSCI111 11

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END + EIEIO)
print()

Constants and comments
are in example program

What does this function do if called as printVerse("pig", "oink")?
As printVerse("oink", "pig")?

6

Function Input and Output
• 2 inputs: animal and sound
• 0 outputs

Ø Displays something but does not return anything (None)

Jan 30, 2019 Sprenkle - CSCI111 12

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END + EIEIO)
print() Function exits here

Words in Different Contexts

• Output from a function
ØWhat is returned from the function

Ø If the function prints something, it’s what the

function displays (rather than outputs).

• Output from a program
ØWhat is displayed by the program

Jan 30, 2019 Sprenkle - CSCI111 13

“Time flies like an arrow.

Fruit flies like bananas.”

— Groucho Marx.

7

PROGRAM ORGANIZATION

Jan 30, 2019 Sprenkle - CSCI111 14

Where are Functions Defined?
• Functions can go inside program script

Ø If no main() function, defined before use/called
•average2.py

Ø If main() function, defined anywhere in script

• Functions can go inside a separate module

Jan 30, 2019 Sprenkle - CSCI111 15

8

Program Organization: main function

• In many languages, you put the “driver” for your

program in a main function

Ø You can (and should) do this in Python as well

• Typically main functions are defined at the top of

your program

ØReaders can quickly see an overview of what

program does

• main usually takes no arguments

Ø Example:

Jan 30, 2019 Sprenkle - CSCI111 16

def main():

Using a main Function
• Call main() at the bottom of your program
• Side effects:

ØDo not need to define functions before main
function

Ø main can “see” all other functions
• Note: main is a function that calls other

functions
ØAny function can call other functions

Jan 30, 2019 Sprenkle - CSCI111 17

9

Example program with a main() function

Jan 30, 2019 Sprenkle - CSCI111 18

def main():
printVerse("dog", "ruff")
printVerse("duck", "quack")

animal_type = "cow"
animal_sound = "moo"
printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END + EIEIO)
print()

main()
oldmac.py

Constants and comments
are in example program

In what order does this program execute?
What is output from this program?

Example program with a main() function

Jan 30, 2019 Sprenkle - CSCI111 19

def main():
printVerse("dog", "ruff")
printVerse("duck", "quack")

animal_type = "cow"
animal_sound = "moo"
printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END + EIEIO)
print()

main() oldmac.py

1. Define (store) main
2. Define (store) printVerse
3. Call main function
4. Execute main function
5. Call, execute printVerse

…

1

2

3

4

5

10

Jan 30, 2019 Sprenkle - CSCI111 20

Summary: Program Organization

• Larger programs require functions to maintain
readability
Ø Use main() and other functions to break up program into

smaller, more manageable chunks

Ø “Abstract away” the details

• As before, can still write smaller scripts without any
functions
Ø Can try out functions using smaller scripts

• Need the main() function when using other functions
to keep “driver” at top
Ø Otherwise, functions need to be defined before use

Why Write Functions?
• Allows you to break up a problem into smaller, more
manageable parts

• Makes your code easier to understand
• Hides implementation details (abstraction)

Ø Provides interface (input, output)
• Makes part of the code reusable so that you:

Ø Only have to write function code once
Ø Can debug it all at once

• Isolates errors
Ø Can make changes in one function (maintainability)

Jan 30, 2019 Sprenkle - CSCI111 21

Similar to benefits of OO Programming

11

VARIABLE LIFETIMES AND SCOPE

Jan 30, 2019 Sprenkle - CSCI111 22

What does this program output?
def main():

x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Jan 30, 2019 Sprenkle - CSCI111 23mystery.py

12

Function Variables

Jan 30, 2019 Sprenkle - CSCI111 24

def main():
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Why can we name two
different variables x?

mystery.py

Tracing through Execution

Jan 30, 2019 Sprenkle - CSCI111 25

def main():
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

D
ef

in
es

 fu
nc

tio
ns

When you call main(), that means you
want to execute this function

13

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Jan 30, 2019 Sprenkle - CSCI111 26

main

Memory stack

x 10

Function names are like last names
Define the SCOPE of the variable

Variable names
are like first names

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Jan 30, 2019 Sprenkle - CSCI111 27

main x 10

sum
Evens limit 10

Called the function sumEvens
Add its parameters to the stack

14

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Jan 30, 2019 Sprenkle - CSCI111 28

main x 10

sum
Evens

total 0
limit 10

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Jan 30, 2019 Sprenkle - CSCI111 29

main x 10

sum
Evens

x 0
total 0
limit 10

15

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Jan 30, 2019 Sprenkle - CSCI111 30

main x 10

sum
Evens

x 8
total 20
limit 10

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Jan 30, 2019 Sprenkle - CSCI111 31

main sum 20
x 10

Function sumEvens returned
• no longer have to keep track of

its variables on stack
• lifetime of those variables is over

16

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Jan 30, 2019 Sprenkle - CSCI111 32

main x 10
sum 20

Variable Scope
• Functions can have the same parameter and variable

names as other functions
Ø Need to look at the variable’s scope to determine which one

you’re looking at
Ø Use the stack to figure out which variable you’re using

• Scope levels
Ø Local scope (also called function scope)

• Can only be seen within the function
Ø Global scope (also called file scope)

• Whole program can access
• More on these later

Jan 30, 2019 Sprenkle - CSCI111 33

17

Writing Comments for Functions
• Good style: Each function must have a comment

ØDescribes functionality at a high-level
Ø Include the precondition, postcondition
ØDescribe the parameters (their types) and the result

of calling the function (precondition and
postcondition may cover this)

Jan 30, 2019 Sprenkle - CSCI111 34

Writing Comments for Functions
• Include the function’s pre- and post- conditions
• Precondition: Things that must be true for

function to work correctly
Ø E.g., num must be even

• Postcondition: Things that will be true when
function finishes (if precondition is true)
Ø E.g., the returned value is the max

Jan 30, 2019 Sprenkle - CSCI111 35

18

Example Comment
• Describes at high-level
• Describes parameters

Jan 30, 2019 Sprenkle - CSCI111 36

def printVerse(animal, sound):
"""
Prints a verse of Old MacDonald, plugging in the
animal and sound parameters (which are strings),
as appropriate.
"""
print(BEGIN_END + EIEIO)
print("And on that farm he had a " + animal + EIEIO)
…

Comment style: Docstring
“documentation string”

Comments from docstrings show up when you use help function

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
"""

"""
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Write the Docstring Comment for sumEvens

Jan 30, 2019 Sprenkle - CSCI111 37

19

TESTING FUNCTIONS

Jan 30, 2019 Sprenkle - CSCI111 38

Testing Functions
• Functions make it easier for us to test our code
• We can write code to test the functions

Ø Test Case:
• Input: parameters
• Expected Output: what we expect to be returned

ØWe can verify the function programmatically
• “programmatically” – automatically execute test cases

and verify that the actual returned result is what we
expected

• No user input required!

Jan 30, 2019 Sprenkle - CSCI111 39

20

test Module
• Not a standard module

Ø Included with our textbook
ØMore sophisticated testing modules but this is

sufficient for us
• FUNCTIONS

ØtestEqual(actual, expected)
• Parameters: actual and expected results for a

function.
• Displays "Pass" and returns True if the test case

passes.
• Displays error message, with expected and actual

results, and returns False if test case fails.
Jan 30, 2019 Sprenkle - CSCI111 40

Example: Testing sumEvens
import test
…
def testSumEvens():

actual = sumEvens(10)
expected = 20
test.testEqual(actual, expected)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

Jan 30, 2019 Sprenkle - CSCI111 41

testSumEvens.py

This is the actual result
from our function

This is what we expect the result to be

What are other good test cases?

21

Summary: Why Write Functions?
• Allows you to break up a hard problem into smaller,

more manageable parts
• Makes your code easier to understand
• Hides implementation details (abstraction)

Ø Provides interface (input, output)
• Makes part of the code reusable so that you:

Ø Only have to write function code once
Ø Can debug it all at once

• Isolates errors
Ø Can make changes in one function (maintainability)

Jan 30, 2019 Sprenkle - CSCI111 42

Similar to benefits of OO Programming

Looking Ahead

• BI – Google Search

• Lab 3 due Friday

• Exam next Friday

ØPrep document up soon

Jan 30, 2019 Sprenkle - CSCI111 43

