Objectives

Computer's representations of data types

Feb 27, 2019

Sprenkle - CSCI111

Big Step Forward

- Reflection: How far have I come in Computer Science?
- A lot of String operations
 - Previously: a lot of arithmetic operations, but you're familiar with those
- As we move forward, requires a lot more "play" and practice
 - > Handouts and your notes help with review
 - > Textbook

Feb 27, 2019

Sprenkle - CSCI111

Pair Programming

- Getting the vocabulary down
 - > Reinforcing the knowledge
 - Despite "ugh, I hate explaining"
- Frequent role switch
- Discussions of strategy
- Push each other

Feb 27, 2019

Sprenkle - CSCI111

Representations of Data

- Computer needs ways to represent different types of data
 - > Eventually, all boils down to 1s and 0s
- Computer needs to translate between what humans know to what computer knows and back again

Feb 27 2019

Seems like a divergence on strings but just wait...

ł

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each position in a decimal number represents a power of 10

Feb 27, 2019

Sprenkle - CSCI111

5

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each *position* in a decimal number represents a power of 10
- Example: 54,087

5	4	0	8	7
104	10 ³	10 ²	10¹	10 0

 \bullet = 5*10⁴ + 4*10³ + 0*10² + 8*10¹ + 7*10⁰

 \bullet = 5*10,000 + 4*1000 + 0*100 + 8*10 + 7*1

Feb 27, 2019

Sprenkle - CSCI111

Number Representations

Characteristic	Decimal	Binary	
Base	10	2	
Digits	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	0, 1	
Position represents	Power of 10	Power of 2	

- Binary: two values (0, 1)
 - Like a light switch (either **off** or **on**) or booleans (either True or False)
- 0 and 1 are binary digits or bits
 - ➤ 64-bit machine: represents numbers (and other data) with 64 bits

 Feb 27, 2019
 Sprenkle - CSCI111
 7

Binary Representation

• Binary number: 1101

1	1	0	1
2 ³	2 ²	2 ¹	2 ⁰

$$= 1*8 + 1*4 + 0*2 + 1*1$$

➤ Decimal value: 13

Practice: what is the decimal value of the binary number **10110**?

Feb 27, 2019

Sprenkle - CSCI111

Binary Representation

Binary number: 10110

1	0	1	1	0
2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

$$\bullet$$
 = 1*2⁴ + 0*2³ + 1*2² + 1*2¹ + 0*2⁰

> 22

Generalize this process into an algorithm. Implement as function: binaryToDecimal(binaryNum)

Feb 27, 2019

Sprenkle - CSCI111

9

Algorithm: Converting Binary → Decimal

Accumulator design pattern

Given the binary number as a string

- 1. The starting exponent will be the length of the string-1
- 2. Initialize the result to zero
- 3. For each bit in the binary number
 - Multiply the bit by the appropriate power of 2
 - > Add this to the result
 - Reduce the exponent by 1
- 4. Return the result

Implement algorithm binaryToDecimal.py

Feb 27, 2019

Sprenkle - CSCI111

Algorithm: Converting Decimal → Binary

Given the decimal as an integer...

- 1. Initialize the result to the empty string
- 2. Repeat until the decimal is 0:
 - > result = str(decimal % 2) + result
 - decimal = decimal // 2
- 3. Display the result

Try out algorithm with 22 as input Practice implementing this algorithm

Feb 27, 2019

Sprenkle - CSCI111

String Representations

- A **string** is a *sequence* of characters
- Each character is stored as a binary number
- ASCII (American Standard Code for Information Interchange) is one standard encoding for characters
 - ➤ Limitation: ASCII is based on the English language
 - Cannot represent other types of characters
 - > Handout is just a subset
- Unicode is a new standard

Feb 27, 2019

Sprenkle - CSCI1111 ASCII Table Handout

ASCII Questions

- Lowercase letters are represented by what range of numbers?
- Uppercase letters are represented by what range of numbers?
- What is the difference between the decimal encoding of 'M' and 'N'?
 - Between 'm' and 'n'?

Feb 27, 2019

Sprenkle - CSCI111

13

ASCII Questions

Lowercase letters are represented by what range of numbers?

 Uppercase letters are represented by what range of numbers?

 What is the difference between the decimal encoding of 'M' and 'N'?

```
Between 'm' and 'n'?
```

> 1

Feb 27, 2019

Sprenkle - CSCI111

Translating to/from ASCII

 Translate a character into its ASCII numeric code using built-in function ord

 Translate an ASCII numeric code into its character using built-in function chr

Feb 27, 2019

Sprenkle - CSCI111

ascii_table.py ascii.py

Encryption

- Process of encoding information to keep it secure
- One technique: Substitution Cipher
 - > Each character in message is replaced by a new character

Feb 27, 2019

Sprenkle - CSCI111

Caesar Cipher

- Replace with a character X places away
 - > X is the *key*
- Julius Caesar used technique to communicate with his generals
- "Wrap around" within the lowercase letters
- Write program(s) to do this in next lab

Feb 27, 2019 Sprenkle - CSCI111 17

Caesar Cipher

 Using the ASCII handout, what would be the encoded messages?

Message	Key	Encoded Message
apple	5	
zebra	5	
the eagle flies at midnight	-5	

Feb 27, 2019 Sprenkle - CSCI111 18

Caesar Cipher

Message	Key	Encoded Message
apple	5	fuuqj
zebra	5	ejgwf
the eagle flies at midnight	-5	ocz zvbgz agdzn vo hdyidbco

What is your algorithm for the encoding process? How would you decode an encrypted message?

Feb 27, 2019 Sprenkle - CSCI111 19

Next Lab

- Write an encoding/decoding program
 - Encode a message
 - ➤ Give to a friend to decode

Caesar Cipher (Partial) Algorithm

- For each character in the message
 - Check if the character is a space; if it is, it stays a space
 - Otherwise
 - Convert the character to its ASCII value
 - Add the key to that value
 - Make sure that the new value is a "valid" ASCII value, i.e., that that new value is in the range of lowercase letter ASCII values
 - ➤ If not, "wrap around" to adjust that value so that it's in the valid range
 - Convert the ASCII value into a character

Feb 27, 2019

Sprenk This is a lot! Let's break it down...

Looking Ahead

- Lab 6 due Friday
- Broader Issue App Data

Feb 27, 2019 Sprenkle - CSCI111 22