
1

Reviewing Lab 10

• Created two classes

Ø Used one class within another class

Ø Tested them

Ø Example of a backend to a real application

• Could add a different user interface

• “Good judgment comes from experience”

Ø Test methods after writing method

Ø Remember your data types

Ø Refer to the data type’s API

• What could you do to improve your development

process?

Mar 29, 2019 Sprenkle - CSCI111 1

Text UI

Backend

Data
Store

Graphical UI

Review
• We discussed two different search techniques:

ØWhat were they?
ØHow do they compare?

Mar 29, 2019 Sprenkle - CSCI111 2

2

Review: Search Using in Review
• Iterates through a list, checking if the element is

found
• Known as linear search
• Implementation:

Mar 29, 2019 Sprenkle - CSCI111 3

def linearSearch(searchlist, key):
for elem in searchlist:

if elem == key:
return True

return False

8 5 3 7

0 1 2 3

What are the strengths and weaknesses
of implementing search this way?

value

pos

Review: Linear Search
• Overview: Iterates through a list, checking if the

element is found

• Benefits:
ØWorks on any list

• Drawbacks:
Ø Slow, on average: needs to check each element of

list if the element is not in the list

Mar 29, 2019 Sprenkle - CSCI111 4

3

Review: Binary Search: Eliminate Half the
Possibilities
• Repeat until find value (or looked through all

values)
ØGuess middle value of possibilities

• (not middle position)
Ø If match, found!
ØOtherwise, find out too high or too low
ØModify your possibilities

• Eliminate the possibilities from your number and
higher/lower, as appropriate

• Known as Binary Search
Mar 29, 2019 Sprenkle - CSCI111 5

Binary Search Implementation

Mar 29, 2019 Sprenkle - CSCI111 6

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid # return True
elif key > searchlist[mid]:

low = mid+1
else:

high = mid-1
return -1 # return False

If you just want to
know if it’s in the list

4

Binary Search
• Example of a Divide and Conquer algorithm

ØBreak into smaller pieces that you can solve
• Benefits:

Ø Faster to find elements (especially with larger lists)
• Drawbacks:

ØRequires that data can be compared
•__lt__, __eq__ methods implemented by the

class (or another solution)
Ø List must be sorted before searching

• Takes time to sort
Mar 29, 2019 Sprenkle - CSCI111 7

Key Questions in Computer Science
• How can we efficiently organize data?
• How can we efficiently search for data, given

various constraints?
Ø Example: data may or may not be sortable

• What are the tradeoffs?

Mar 29, 2019 Sprenkle - CSCI111 8

5

Empirical Study of Search Techniques

• How long does it take to find various keys?

ØMeasure by the number of comparisons

ØVary the size of the list and the keys

ØWhat are good tests for the lists and the keys?

Mar 29, 2019 Sprenkle - CSCI111 9

search_compare.py

Goal: Determine which technique is
better under various circumstances

Empirical Study of Search Techniques
• Analyzing Results …

ØBy how much did the number of comparisons for
linear search vary?

ØBy how much did the number of comparisons for
binary search vary?

• What conclusions can you draw from these
results?

Mar 29, 2019 Sprenkle - CSCI111 10

search_compare.py

6

Search Strategies Summary
• Which search strategy should I use under the

following circumstances?
Ø I have a short list

Ø I have a long list

Ø I have a long sorted list

Mar 29, 2019 Sprenkle - CSCI111 11

Search Strategies Summary
• Which search strategy should I use under the

following circumstances?
Ø I have a short list

• How short? How many searches? Linear (in)
Ø I have a long list

• Linear (in) - because don’t know if in order,
comparable

• Alternatively, may want to sort the list and then
perform binary search, if sorting first won’t be more
effort than just sorting.

Ø I have a long sorted list
• Binary

Mar 29, 2019 Sprenkle - CSCI111 12

7

Extensions to Search

Mar 29, 2019 Sprenkle - CSCI111 13

In FaceSpace, we want to find people who have a
certain name.

Consider what happens when searchlist is a list
of Persons and key is a name (a str)

We want to find a Person whose name matches
the key and return the Person

List of Person objects

Mar 29, 2019 Sprenkle - CSCI111 14

Example: looking for a person with the name “Chadwick”…

0 1 2 3 4

Person
Id:“1”
“Gal”

Person
Id:“2”

“Scarlett”

Person
Id:“3”

“Chadwick”

Person
Id: “4”
“Ben”

Person
Id: “5”

“Samuel”

8

List of Person objects

Mar 29, 2019 Sprenkle - CSCI111 15

0 1 2 3 4

Person
Id:“1”
“Gal”

Person
Id:“2”

“Scarlett”

Person
Id:“3”

“Chadwick”

Person
Id: “4”
“Ben”

Person
Id: “5”

“Samuel”

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id:“3”

“Chadwick”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Sorted by name, e.g.,
personList.sort(key=Person.getName)

Extensions to Solution

Mar 29, 2019 Sprenkle - CSCI111 16

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

Consider what happens when
searchlist is a list of
Persons, key is a str
representing a name
Goal: return a Person object with
that name (key)

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id:“3”

“Chadwick”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

9

Extensions to Solution

Mar 29, 2019 Sprenkle - CSCI111 17

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

What should we do to make
search results more intuitive?

Consider what happens when
searchlist is a list of Persons,
key is a str representing the name

Goal: find a Person with a certain name

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id:“3”

“Chadwick”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Summary of Extensions to Solution
• Check the name of the Person at the midpoint
• Represent, handle when no Person matches
• What could we do if more than one person has that

name?

• Note: we’re not implementing “name contains”
Ø How could we implement that?

Mar 29, 2019 Sprenkle - CSCI111 18

10

How Does Sort Work?
• Several different ways we can sort
• One intuitive way: break down the sort problem

into smaller problems
Ø Let’s say we have a deck of cards that needs to be

sorted

Mar 29, 2019 Sprenkle - CSCI111 19

Algorithm: Merge Sort
• I have a list to sort

ØBreak the list into two halves
Ø Sort the first half
Ø Sort the second half
ØMerge those sorted halves together

Mar 29, 2019 Sprenkle - CSCI111 20

11

Algorithm: Merge Sort

Mar 29, 2019 Sprenkle - CSCI111 21

def mergeSort(listOfNumbers):
firsthalf = listOfNumbers[:len(listOfNumbers)//2]
secondhalf = listOfNumbers[len(listOfNumbers)//2:]
sortedFirst = mergeSort(firsthalf)
sortedSecond = mergeSort(secondhalf)
whole = merge(sortedFirst, sortedSecond)
return whole

But when do we stop calling mergeSort?
Right now, it seems like we will keep calling

mergeSort repeatedly!

Algorithm: Merge Sort

Mar 29, 2019 Sprenkle - CSCI111 22

def mergeSort(listOfNumbers):
if len(listOfNumbers) == 2: # base case

sort those two numbers
if listOfNumbers[0] > listOfNumbers[1]:

temp = listOfNumbers[0]
listOfNumbers[0] = listOfNumbers[1]
listOfNumbers[1] = temp

return listOfNumbers
firsthalf = listOfNumbers[:len(listOfNumbers)//2]
secondhalf = listOfNumbers[len(listOfNumbers)//2:]
sortedFirst = mergeSort(firsthalf)
sortedSecond = mergeSort(secondhalf)
whole = merge(sortedFirst, sortedSecond)
return whole

12

Exam 2 Results

Mar 29, 2019 Sprenkle - CSCI111 23

Section

Total A B C
Average 88.50 84.0 85.62 84.1
Median 91.25 87.5 93.55 86.7

Looking Ahead
• Lab 11

Mar 29, 2019 Sprenkle - CSCI111 24

