
1

Objectives
• Review
• Lab 1

Ø Linux practice
ØProgramming practice

• Print statements
• Numeric operations, assignments
• Input statements

Jan 15, 2019 Sprenkle - CSCI111 1

Lab 0 Feedback
• Overall, did well

Ø Lost points because didn’t check work
• E.g., broken Web page links, not including required

text
ØGenerally, lab grades should be high

• Interesting article links!
ØConsider reviewing for extra credit

• Sakai extra credit Easter egg
ØGreat fun facts!

Jan 15, 2019 Sprenkle - CSCI111 2

2

Review
• How do we display output?
• What are the data types available in Python?
• How should we name variables?

ØDescribe what good identifiers look like
• How do we assign values to variables?

Jan 15, 2019 Sprenkle - CSCI111 3

Recap: Programming Fundamentals

• Most important data types (for us, for now):
int, float, str, bool
ØUse these types to represent various information

• Variables have identifiers, (implicit) types
Ø Should have “good” names
ØNames: start with lowercase letter; can have

numbers, underscores

• Assignments
Øx = y means “x set to value y” or “x is assigned

value of y”
ØOnly variable on LHS of statement changes

Jan 15, 2019 Sprenkle - CSCI111 4

3

Review: Assignment statements
• Assignment statements are NOT math

equations!

• These are commands!
x = 2
y = x
x = x + 3

Jan 15, 2019 Sprenkle - CSCI111 5

count = count + 1

What are the values of x, y?

Review: Numeric Arithmetic Operations

Jan 15, 2019 Sprenkle - CSCI111 6

Remember PEMDAS

Symbol Meaning

+ Addition

- Subtraction
* Multiplication
/ Division

% Remainder (“mod”)

** Exponentiation (power)

4

Review
• What is our development process?

ØWhat is the two-part verification process we need to
do after we implement a program?

Jan 15, 2019 Sprenkle - CSCI111 7

Review: Development Process
1. Sketch algorithm to solve problem

Ø Write steps in comments
2. Fill in details in Python
3. Come up with good test cases

Ø Input and expected output
4. Repeat until know the code works and is “good”

Ø Test code
Ø Debug
Ø Refine until “good”

• For now: good variable names, good/pretty output

Jan 15, 2019 Sprenkle - CSCI111 8

5

Review
• How do we get input from the user?

ØHow is getting numeric input different from getting
text input?

Jan 15, 2019 Sprenkle - CSCI111 9

Restricting User’s Inputs

Jan 15, 2019 Sprenkle - CSCI111 10

>>> x = 7
>>> yourVal = input("My val is: ")
My val is: x
>>> print(yourVal)
x

6

Restricting User’s Inputs

Jan 15, 2019 Sprenkle - CSCI111 11

>>> x = 7
>>> yourVal = input("My val is: ")
My val is: x
>>> print(yourVal)
x
>>> yourVal = eval(input("My val is: "))
My val is: x
>>> print(yourVal)
7
>>> yourVal = int(input("My val is: "))
My val is: x
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10:
'x'

What happened here?

Identify the Parts of a Program

Jan 15, 2019 Sprenkle - CSCI111 12

Demonstrate numeric and string input
by Sara Sprenkle for CS111
#

color = input("What is your favorite color? ")
print("Cool! My favorite color is _light_", color, "!")

rating = eval(input("On a scale of 1 to 10, how much do
you like Chadwick Boseman? "))
print("Cool! I like him", rating*1.8, "much!")

Identify the comments, variables, functions,
expressions, assignments, literals

input_demo.py

7

Identify the Parts of a Program

Jan 15, 2019 Sprenkle - CSCI111 13

Demonstrate numeric and string input
by Sara Sprenkle for CS111
#

color = input("What is your favorite color? ")
print("Cool! My favorite color is _light_", color, "!")

rating = eval(input("On a scale of 1 to 10, how much do
you like Chadwick Boseman? �)
print("Cool! I like him� , rating*1.8, "much!")

Identify the comments, variables, functions, expressions,
assignments, literals

expression

Improving average2.py
• With what we just learned, how could we

improve average2.py?

• Example of suggested approach to development
Ø Input is going to become fairly routine.
ØWait on input until you have figured out the rest of

the program/problem.

Jan 15, 2019 Sprenkle - CSCI111 14

Examples from each class period are on schedule page.

8

Design Patterns
• General, repeatable solution to a commonly

occurring problem in software design
Ø Template for solution

Jan 15, 2019 Sprenkle - CSCI111 15

Design Patterns
• General, repeatable solution to a commonly

occurring problem in software design
Ø Template for solution

• Example (Standard Algorithm)
ØGet input from user
ØDo some computation
ØDisplay output

Jan 15, 2019 Sprenkle - CSCI111 16

print
Assign.
Assign. x = input("…")

ans = …
print(ans)

9

Jan 15, 2019 Sprenkle - CSCI111

Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax rules
• Reports syntax errors

2. Executes expression(s)

Python
Interpreter

Expression

Output Executable
bytecode

Have a lot of these early on!

Only if no
syntax errors

17

Jan 15, 2019 Sprenkle - CSCI111

Two Modes to Execute Python Code

• Interactive
Ø Try out Python expressions

• Batch: execute scripts (i.e., files containing
Python code)
ØWhat we’ll write usually

18

10

Jan 15, 2019 Sprenkle - CSCI111

Python Interpreter: Interactive Mode
Run by typing python3 in terminal

Type in the expressionPython
displays
the result Error Message:

Thinks word must be a
variable and it is not defined

print: Special function to display output
19

runHelpClient &

Jan 15, 2019 Sprenkle - CSCI111

Batch Mode: Execute Scripts
1. Programmer save a program/script into a text file

using a text editor.
2. An interpreter turns each expression in file into

bytecode and then executes each expression
Python

Interpreter

Program
text file

program.py

Output

Text Editor
(e.g., jEdit or IDLE)

Executable
bytecode

One “line”
at a time

If error,
• Get feedback about which line

caused the problem
• Interpreter stops

validating/executing lines

20

11

Jan 15, 2019 Sprenkle - CSCI111

Example Python Script

• What does this program do?
ØValidate your guess by executing the program

• Go into
/csdept/courses/cs111/handouts/lab1
directory

•python3 hello.py

A first program
by Sara Sprenkle, 01/15/2019

print("Hello, world!")

Print statement

Text file named: hello.py

21

Jan 15, 2019 Sprenkle - CSCI111

Example Python Script

• Only Hello, world! is printed out
• Python ignores everything after the “#”

Ø Known as “comments” or, collectively, as documentation

A first program
by Sara Sprenkle, 01/15/2019

print("Hello, world!")

Documentation
-- good style

22

Your program should always start
with a high-level description of

what the program does, your name, and
the date the program was written

12

Jan 15, 2019 Sprenkle - CSCI111

IDLE Development Environment
• Runs on top of Python interpreter
• Command: idle3 &

Ø& Runs command in “background” so you
can continue to use the terminal

• Can use IDLE to
ØRun Python in interactive mode
ØWrite and execute scripts in batch mode

23

Since our programming language is
named after Monty Python,

what is the development environment named after?

python
IDLE

IDLE
• IDLE first opens up a Python shell

Ø i.e., the Python interpreter in interactive mode

Jan 15, 2019 Sprenkle - CSCI111 24

13

Jan 15, 2019 Sprenkle - CSCI111

Your Turn in Interactive Mode…
• Run idle3
• Enter the following expressions and see what

Python displays:
Ø3
Ø4 * -2
Ø-1+5
Ø2 +
Øprint("Hello!")

• Alternatively, can use python3
Ø If you used python3, to quit the interpreter, use

Control-D
25

IDLE

• In IDLE, under the File menu

ØUse New File or Open, as appropriate, to open a

window so that you can write your Python script.

• Practice:

ØCreate a new file

ØPrint out “hello!”

Ø Save the file in your home directory

Ø Execute the program (opens a new Python shell)

• Run à Run Module or F5

Jan 15, 2019 Sprenkle - CSCI111 26

14

Jan 15, 2019 Sprenkle - CSCI111

Recap: Executing Python

• Interactive Mode
Ø Try out expressions
Øpython3

• Batch Mode
Ø Execute Python scripts
Øpython3 <pythonscript>

• IDLE combines these two modes into one
integrated development environment
Øidle3 &

27

Lab 0 Feedback
• If there were any issues with your web page, go

back and fix them first.
ØWe can help!
ØGoal: Make sure you’re set up for the semester,

when we create more web pages
• Otherwise, you won’t remember how to fix them

Jan 15, 2019 Sprenkle - CSCI111 28

15

Sprenkle - CSCI111

Lab 1: Linux Practice
• Review your notes, handouts from last lab
• Setting up directories

Ø Make the directory, copy files
• Note: terminal tells you which directory you’re in

Jan 15, 2019 29

Lab 1 Expectations
• Comments in programs

ØHigh-level comments, author
ØNotes for your algorithms, implementation

• Nice, readable, clearly labeled understandable
output
ØUser running your program needs to understand

what the program is saying
• Honor System

ØPledge the Honor Code on printed sheets

Jan 15, 2019 Sprenkle - CSCI111 30

16

Lab 1: Programming Practice
• After the warm up problems
• Name program files lab1.n.py, where n is the

problem you’re working on
• After completed, demonstrate that your

program works
1. Close IDLE/Python interpreter, rerun program

• Get rid of the output from when you were
developing/debugging (“scratch work”)

2. Save output for each program in file named
lab1.n.out where n is the problem you’re
working on

Jan 15, 2019 Sprenkle - CSCI111 31

Lab 1 Expectations: Example Output
• Your program should have clearly labeled output

ØClear to user what is happening in program

• You will run some programs multiple times to
demonstrate that the program works with
different values of variables.

• Resulting output should be saved in a .out file

Jan 15, 2019 Sprenkle - CSCI111 32

17

Lab 1 Expectations: Read the Directions
• To completion
• Often the answer to your question is in the next

sentence
• Practice patience

ØRushing results in poor outcomes

Jan 15, 2019 Sprenkle - CSCI111 33

Lab 1 Submission
• Electronic as well as printed

Ø I can execute your program, help find mistakes
ØCopy your lab directory into your turnin directory

• Instructions are in the lab

Jan 15, 2019 Sprenkle - CSCI111 34

18

Honor
• You may discuss programming assignments informally

with other students
Ø Sharing the code is an honor violation
Ø Do not share your password

• You should know where to draw the line between
legitimate outside assistance with course material and
outright cheating
Ø Students who obtain too much assistance without learning

the material ultimately cheat themselves

• If you have any uncertainty about what this means,
consult with me before you collaborate.

Jan 15, 2019 Sprenkle - CSCI111 35

Jan 15, 2019 Sprenkle - CSCI111

Honor System: Rules of Thumb
• Discussion of problems/programs - OK

ØClarification questions
ØAlgorithm discussion (on paper, board)

• Do not look at another student’s solution
Ø “What did you do for that?”

• Debugging help
ØProgrammer always “owns” keyboard, mouse
ØHelper can read other’s program/debug/help, up to

5 minutes
• Ask student assistant or me or email me for problems

that require more time
36

19

Lab 1 Overview
• Linux practice
• IDLE practice
• Programming practice

Jan 15, 2019 Sprenkle - CSCI111 37

Reintroduce lab assistants

On to the Lab!

• When you get to practice.py, add a print

statement in practice.py that says “I read the

slides!” for 2 points extra credit.

Jan 15, 2019 Sprenkle - CSCI111 38

20

Review: Formalizing Process of

Developing Computational Solutions

1. Create a sketch of how to solve the problem

(the algorithm)

2. Fill in the details in Python

3. Test the Python program with good test cases

a. If errors found, debug program

b. Repeat step 3

Jan 15, 2019 Sprenkle - CSCI111 39

Good Development Practices

• Design the algorithm

ØBreak into pieces

• Implement and Test each piece separately
Ø Identify the best pieces to make progress

Ø Iterate over each step to improve it

• Write comments FIRST for each step

Ø Elaborate on what you’re doing in comments when

necessary

Jan 15, 2019 Sprenkle - CSCI111 40

21

General Announcements
• CS Issues Grading/Expectations

Ø 7 pts for blog entry
• Common issue – missing answers to one of questions

Ø 3 pts for participation in class

• Example programs posted for each day on course
web site

Jan 15, 2019 Sprenkle - CSCI111 41

What Does This Program Do?
• How can we make it easier to understand?

Jan 15, 2019 Sprenkle - CSCI111 42

program_before.py
program_after.py

22

Linux Command Conventions
•<arg> means fill in the appropriate thing
•[arg] means optional argument
• Example: Move or Rename a file

Ømv <sourcefile> <destination>

• Moves file.py to current directory with a new name
Ø If <destination> is a directory, keeps the

original source file’s name

• File file.py will be in labs/lab1 directory

Jan 15, 2019 Sprenkle - CSCI111 43

mv ~/labs/file.py ~/labs/lab1/ directory

mv ~/labs/file.py newfilename.py

