
1

Lab 4
• Review Lab 3

ØRun Animations!
• Function review

Feb 5, 2019 Sprenkle - CSCI111 1

Lab 3
• Iterative Fibonacci Sequence was a question on

several students’ interviews

Feb 5, 2019 Sprenkle - CSCI111 2

2

Feb 5, 2019 Sprenkle - CSCI111

Lab 3 Feedback

• Continuing to get tougher in grading
ØPaying more attention to style (e.g., variable names),

efficiency, readability, good output
ØHigh-level descriptions
ØMore strict on adhering to problem specification
ØConstants
ØDemonstrate program more than once if gets input

from user or outcome changes when run again
• Find errors before I do!

3

Program Organization

Feb 5, 2019 Sprenkle - CSCI111 4

high-level description
author name

import statements

CONSTANT_DEFNS = …

program_statements ...
program_statements ...
program_statements …

3

Program Organization

Feb 5, 2019 Sprenkle - CSCI111 5

high-level description
author name

import statements

CONSTANT_DEFNS = …

def main():
statements…
statements...

def otherfunction():
statement...

Lab 2 Feedback: Common Issues

Feb 5, 2019 Sprenkle - CSCI111 6

operand1=6
for operand2 in range(1, 14):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 14):
operand1=6
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is more efficient (does less “work”)?

4

Lab 2 Feedback: Common Issues

Feb 5, 2019 Sprenkle - CSCI111 7

operand1=6
for operand2 in range(1, 14):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 14):
operand1=6
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

çAdditional assignment each time through loop

Which solution is more efficient (does less “work”)?

Lab 2 Feedback: Common Issues

Feb 5, 2019 Sprenkle - CSCI111 8

operand1=6
for operand2 in range(1, 14):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

operand1=6
operand2=0
for x in range(13):

operand2 = x + 1
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

5

Lab 2 Feedback: Common Issues

Feb 5, 2019 Sprenkle - CSCI111 9

operand1=6
for operand2 in range(1, 14):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

operand1=6
operand2=0
for x in range(13):

operand2 = x + 1
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

More code makes
solution more difficult

to understand

Animation Feedback
• If moving multiple objects together

ØMove all the objects, then sleep
ØOtherwise, animation looks choppy
• Could use a list with the for loop, as discussed

for several sections in the textbook
Ø Simplifies and reduces code

Feb 5, 2019 Sprenkle - CSCI111 10

for object in [myObj1, myObj2, myObj3]:
object.move()

sleep(.001)

6

Run Animations

Feb 5, 2019 Sprenkle - CSCI111 11

Review
• What makes a function “good”?

Feb 5, 2019 Sprenkle - CSCI111 12

7

Feb 5, 2019 Sprenkle - CSCI111 13

Writing a “Good” Function

• Should be an “intuitive chunk”
ØDoesn’t do too much or too little

ØIf does too much, try to break into more
functions

• Should be reusable

• Always have comment that tells what the
function does

Writing Comments for Functions
• Good style: Each function must have a comment

ØDescribes functionality at a high-level
Ø Include the precondition, postcondition
ØDescribe the parameters (their types) and the result

of calling the function (precondition and
postcondition may cover this)

Feb 5, 2019 Sprenkle - CSCI111 14

8

Writing Comments for Functions
• Include the function’s pre- and post- conditions
• Precondition: Things that must be true for

function to work correctly
Ø E.g., num must be even

• Postcondition: Things that will be true when
function finishes (if precondition is true)
Ø E.g., the returned value is the max

Feb 5, 2019 Sprenkle - CSCI111 15

Refactoring:
Converting Functionality into Functions
1. Identify functionality that should be put into a function

Ø What should the function do?
Ø What is the function’s input?
Ø What is the function’s output (i.e., what is returned)?

2. Define the function
Ø Write comments

3. Test the function programmatically
4. Call the function where appropriate
5. Create a main function that contains the “driver” for

your program
Ø Put at top of program

6. Call main at bottom of program

Feb 5, 2019 Sprenkle - CSCI111 16

9

Review
• How can we programmatically test functions?

Feb 5, 2019 Sprenkle - CSCI111 17

test module’s testEqual function
• Example from yesterday

Feb 5, 2019 Sprenkle - CSCI111 18

def testWinPercentage():
test.testEqual(calculateWinPercentage(0, 1), 0)
test.testEqual(calculateWinPercentage(2, 2), .5)
test.testEqual(calculateWinPercentage(3, 7), .3)
test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()

After confirming that the function works…

10

test module’s testEqual function
• Example from yesterday

Feb 5, 2019 Sprenkle - CSCI111 19

def testWinPercentage():
test.testEqual(calculateWinPercentage(0, 1), 0)
test.testEqual(calculateWinPercentage(2, 2), .5)
test.testEqual(calculateWinPercentage(3, 7), .3)
test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()
main()

Comment out call to test function.
Call main.

Lab 4 Overview

• Calling functions defined in the same program

• Refactoring code

• Modifying function definitions

• Testing functions

• Creating a module

• Writing a program with a function from scratch

Feb 5, 2019 Sprenkle - CSCI111 20

