
1

Lab 6
• Pair Programming
• Review Lab 5
• Review indefinite loops, strings
• Lab 6

Feb 26, 2019 Sprenkle - CSCI111 1

Lab 6: Pair Programming

Feb 26, 2019 Sprenkle - CSCI111 2

Every lab,
pairs will change

Sit with your teammate.

You can each log in, but one
computer will be the machine
you [both] program on.

2

Pair Programming
• Two people work together at a single computer
• Driver and Navigator work together on one task
• Roles change often
• Collective responsibility for outcome
• One approach used in “real world”

Feb 26, 2019 Sprenkle - CSCI111 3

Pair Programming Tradeoffs
Pros

• Bring together multiple
perspectives, experiences,
abilities, and expertise

• Higher quality code
Ø Catch bugs earlier

• Knowledge transfer
• Enhanced learning,

communication
• Requires 100% engagement

Cons

• Slows down lines per
minute (~15%)
• Loss of autonomy
• Scheduling
• Overconfidence
• Concentration
• Requires 100% engagement

Feb 26, 2019 Sprenkle - CSCI111 4

3

Pair Programming Roles
Driver
• (Like the role I play when we write

programs in class)
• Uses keyboard and mouse to

execute all actions on the
computer

• Ask questions wherever there is a
lack of clarity

• Offer alternative solutions if you
disagree with the navigator
Ø When there is disagreement, defer

to the navigator. If idea fails, get to
failure quickly and move on

• Make sure code is “clean”
• Explains actions taken
• Brainstorms

Navigator
• (Like the role you play when

we write programs in class)
• Directs driver’s actions

Ø Dictates the code that is to be
written - the “what”

Ø Clearly communicates what
code to write

• Explains why chose particular
solution to this problem

• Checks for errors and typos
• Plans the problem solving or

debugging actions
• Asks questions

Feb 26, 2019 Sprenkle - CSCI111 5Your team will create your own workflow, within these guidelines

Expectations

• Take collective ownership of the code you and

your partner are writing

ØNo “my part” and “your part.”

• Be an active, engaged, respectful team player

ØGoal: 50/50 division of labor (brainstorming, typing,

testing, problem-solving, debugging, …)

Ø Speak up when you don’t understand, think there is

an error, or wonder if there is a better way

ØDon’t be too proud to admit a mistake

ØApologize if you hurt your partner’s feelings

Feb 26, 2019 Sprenkle - CSCI111 6

4

Expectations

• Be open-minded
ØPair programming is an opportunity to learn
ØOne of the most important predictors of success in

pair programming is buy-in: if you are determined to
make the practice fail, it will.

• Coordinate breaks (e.g., for bathroom)
• Seek advice when you need it

ØWe’re still here to help
ØWe’ll ask even more questions to guide your

approach
Feb 26, 2019 Sprenkle - CSCI111 7

Expectations
• Don’t be bound to the keyboard/mouse/monitor

ØDraw pictures
ØRefer to handouts

• Break down the problem into manageable pieces
ØNot always in order of problem

• Comments – include both authors

Feb 26, 2019 Sprenkle - CSCI111 8

5

Submissions
• At the end of the lab period, run pairturnin.sh to copy

your files to a shared location
• If you finish the lab in class, pairturnin.sh also serves as

your electronic submission
• Otherwise (if you didn’t finish),

Ø If you want to continue working together after lab, you can, BUT
you must always work together in pair
• No working partly on your own/partly together
• Run pairturnin.sh when you complete the lab
• Use indiv_startup.sh to copy the shared code into your own lab

directory
Ø If you want to finish up on your own
• Run indiv_startup.sh to copy the shared code into your own

lab directory
• Submit using turnin.sh as usual

Feb 26, 2019 Sprenkle - CSCI111 9

See lab for more information

Advice from Previous Students

• I would advise them to really study the material and
make sure they understand the vocabulary so that
they can have useful conversations with their
partners and the navigator can actually navigate.

• I would advise them to prepare for the labs
beforehand so the person and their partner would
be on even footing before the lab.

• Try talking through the syntax, semantic, or EOF
error before asking for help. By doing so, if the pair
does not figure out the error on their own, they are
able to explain their error better after talking it
through as a pair.

Feb 26, 2019 Sprenkle - CSCI111 10

6

Advice from Previous Students
• If your partner seems to be taking a lead and you

are falling behind, voice that to them and ask if they
can help you to understand the material better. Try
to be conscious of your role and if you are taking too
much of a lead.
• I would also recommend, even though the labs are

finished in pairs, to make sure practice is done on
your own before taking the tests.
• It often felt as if one partner was far more skilled

than the other and thus that only one should have a
say. As we began to practice this more, I think that
the class as a whole became far more relaxed and
were able to begin to truly collaborate effectively.

Feb 26, 2019 Sprenkle - CSCI111 11

Advice from Previous Students

• Trust your partner more than you think you should; be
willing to take an objective step back and start over; test
often and test well; and experiment to prove to yourself
how something works.

• I recommend that they learn to listen to their partner. By
actually hearing out their ideas, you can learn a lot about
how problems can be solved in different fashions and be
able to apply these skills later on in their lives in and out
of programming.

• My best advice for pair programming and programming is
to not be afraid to fail. It is okay to mess up, your partner
will not judge you for a mistake, but you have to not be
afraid to fail in order to succeed in computer science

Feb 26, 2019 Sprenkle - CSCI111 12

7

LAB 5 REVIEW

Feb 26, 2019 Sprenkle - CSCI111 13

Common Issue: Inefficiency

Feb 26, 2019 Sprenkle - CSCI111 14

if team1Score > team2Score:
print("Team 1 wins!")

else:
if team2Score < team1Score:

print("Team 2 wins!")
else:

if team1Score == team2Score:
print("They tied! We're going to overtime!")

Extra if statement, not necessary
Know when hit second else that the only possibility is a tie

if team1Score > team2Score:
print("Team 1 wins!")

else:
if team2Score < team1Score:

print("Team 2 wins!")
if team1Score == team2Score:

print("They tied! We're going to overtime!")

8

Feb 26, 2019 Sprenkle - CSCI111

Problem 1, 2 Efficiency

team1 > team2

team1 wins
True

1

team2 > team1

Tie

True
team2 == team1

team2 wins

True

team1 > team2

team1 wins

True

2

team2 > team1

Tieteam2 wins

True

End

•How many conditions evaluated?

15

Feb 26, 2019 Sprenkle - CSCI111

Problem 1, 2 Efficiency

team1 > team2

team1 wins
True

1

team2 > team1

Tie

True
team2 == team1

team2 wins

True

team1 > team2

team1 wins

True

2

team2 > team1

Tieteam2 wins

True

End

16

Always 3
comparisons

At most2 comparisons

9

Feb 26, 2019 Sprenkle - CSCI111

Problem 2 (& 3) Efficiency

team1 > team2

1 wins

True

team2 > team1

Tie2 wins

True

End

team1 == team2

Tie

True

team2 > team1

1 wins2 wins

True

End

Which tends to be more efficient?
How many conditions to evaluate?

17

Feb 26, 2019 Sprenkle - CSCI111

Problem 2 (& 3) Efficiency

team1 > team2

1 wins

True

team2 > team1

Tie2 wins

True

End

team1 == team2

Tie

True

team2 > team1

1 wins2 wins

True

End

18

Equality is a rare condition;
on average, will always need
to check second condition.

More common case.
May only need to check
one condition.

10

Adding to Development Process

Feb 26, 2019 Sprenkle - CSCI111 19

• Last development step:
ØAssess your program again after it works
Ø Is it efficient? Is it readable? Can I simplify?

Lab 5 – Greatest Hits: Less-Complicated
Approaches for Customized Display
• Correct but more complicated solution to

handling customized display

Feb 26, 2019 Sprenkle - CSCI111 20

if albums == 1 and extraTracks == 0:
print("Your album requires", albums, "cd")

elif albums == 1 and extraTracks > 0:
print("Your album requires", albums, "cd")
print(extraTracks, "tracks will have to wait for

the next Greatest Hits album")
elif albums > 1 and extraTracks > 0:

print("Your album requires", albums, "cds")
print(extraTracks, "tracks will have to wait for

the next Greatest Hits album")
elif albums > 1 and extraTracks == 0:

print("Your album requires", albums, "cds")

Other, similar examples in submissions

11

Lab 5 – Greatest Hits: Less-Complicated
Approaches for Customized Display
• Less complicated solution

Ø Simpler logic, conditions
Ø Less duplicated code

Feb 26, 2019 Sprenkle - CSCI111 21

if albums == 1:
print("Your album requires", albums, "CD.")

else:
print("Your album requires", albums, "CDs")

if extraTracks > 1:
print(extraTracks, "tracks will have to wait for

the next Greatest Hits album")
elif extraTracks==1:

print(extraTracks, "track will have to wait for
the next Greatest Hits album")

Relational Operators
• Reminder: instead of, for example,

can use

Feb 26, 2019 Sprenkle - CSCI111 22

num < 0 or num > 0

num != 0

12

Championship Extensions

• Simulate scores (rather than the difference)
• Change odds based on home/visiting team
• Dynamically change odds based on who won/lost

already in the series

• Today: could stop the series after a team reaches
four wins. How?

Feb 26, 2019 Sprenkle - CSCI111 23

A lot you could add already;
even more with a little more knowledge

Review: Conditions and Indefinite Loops

• How do we write a condition that is true

Ø Iff two expressions are both true

Ø If at least one of those expressions is true

• What is the syntax for an indefinite loop?

• Which is more powerful: a for loop or an

indefinite loop?

Feb 26, 2019 Sprenkle - CSCI111 24

13

str Review
• How can we combine strings?
• How can we find out how long a string is?
• How can you tell if one string is contained in

another string?
• How can we find out the character at a certain

position?
• How can we iterate through a string?
• How do you call a method on a string?

Feb 26, 2019 Sprenkle - CSCI111 25

String Methods vs. Functions

Functions
• All input comes from

arguments/parameters
• Example: len is a built-in

function
Ø Called as len(strobj)

Methods
• Input comes from

arguments and the string
the method was called on
• Example:

Ø strobj.upper()

Feb 25, 2019 Sprenkle - CSCI111 26

14

Using the APIs
• Given a problem, break down the problem

ØCan any of the parts of the problem be solved using a
method in the API?

Feb 25, 2019 Sprenkle - CSCI111 27

Are You Smarter Than a 5th Grader?
• Problem in spelling from the show: How many

a's are in abracadabra?
Ø Solve using str methods

• Silly problem but can generalize to other
problems
ØHow many a’s are in a given word?
ØHow many of a certain letter are in a given word?

Feb 25, 2019 Sprenkle - CSCI111 28

15

Lab 6
• Advanced conditions
• Indefinite Loops
• Text-based problems

Feb 26, 2019 Sprenkle - CSCI111 29

