
1

Lab Overview
• Review lab 8
• Prep for lab 9

March 19, 2019 Sprenkle - CSCI111 1

Lab 9: Pair Programming

March 19, 2019 Sprenkle - CSCI111 2

2

Writing Encodings to the File
• With functions, writing to the file became

simpler
ØCalled a function that returned a string
ØCould write that string to a file
• Function for writing file was essentially

Ø1) open file for writing
Ø2) write the encoding to the file
Ø3) close the file

March 19, 2019 Sprenkle - CSCI111 3

Difference btw File Name and Object
• File name is a string
• File object is a file
• Need the file name to create the file object

March 19, 2019 Sprenkle - CSCI111 4

• Need to remember data types
because not explicit in Python
• Use good variable names to help

3

Partial Gymnastics Code

March 19, 2019 Sprenkle - CSCI111 5

def main():
scores = getScoresFromFile(filename)
avgDiffScore = scores.pop(0)

avgExecScore = calculateAverageExecScore(scores)
…

def calculateAverageExecScore(listOfScores):
listOfScores.sort()
totalExecScore = 0
for pos in range(1, len(listOfScores)-1):

totalExecScore += listOfScores[x]
average = totalExecScore/(len(listOfScores)-2)
return average

…

Returns and deletes first item in list

For space, no comments,
partial solution

File Reminders
• When you open a file, you should close the file

March 19, 2019 Sprenkle - CSCI111 6

4

LAB 9 PREPARATION

March 19, 2019 Sprenkle - CSCI111 7

Review: Dictionaries
• What is a dictionary?
• What are some things we can do with

dictionaries?

March 19, 2019 Sprenkle - CSCI111 8

Review the problems we solved using a dictionary

5

Revisiting Class Years Count Problem
• Problem Review: Given a file of the form <firstname>

<year>, creates a mapping between the class year and the
number of people in that class
• Solution Review:

Ø Create an empty dictionary
Ø For each line of the file
• Extract the year
• Update the accumulator for the year

• Unresolved issue: how do we initialize the accumulators?
Ø When do we initialize the accumulators when we solve

problem by hand?

March 19, 2019 Sprenkle - CSCI111 9

classYearToNumStudents = {}

classYearToNumStudents[classYear] += 1

Initialize the Accumulators “on the Fly”

March 19, 2019 Sprenkle - CSCI111 10

for line in yearsFile:
studentInfoList = line.split()

classYear = studentInfoList[1]

if classYear in classYearToNumStudents:
classYearToNumStudents[classYear] += 1

else:
classYearToNumStudents[classYear] = 1

In English, what does this code mean?

6

March 19, 2019 Sprenkle - CSCI111 11

Lab 9: Dealing with Real Data

• Problem: Determine most common first and last
names at W&L
Ø4 data files, containing student names
• Last names, female first names, male first names, all

first names

• 1 name per line

ØWhat data structure to use?

• Create a class to help with data
• Create output file used by another application

ØCommon use of programming

Motivating using list’s sort method
with a key
• We may not want to sort a list of objects by the

“standard” way to sort objects

• Consider sorting strings: How does Python sort
strings usually?

March 19, 2019 Sprenkle - CSCI111 12

7

Using list’s sort method with a key
• We may not want to sort a list of objects by the

“standard” way to sort objects
• Consider sorting strings: How does Python sort

strings usually?
ØAlphabetically, upper-case first

• To alphabetize strings, sorting them by their
lowercase value:

March 19, 2019 Sprenkle - CSCI111 13

words.sort(key=str.lower)

Method to call to do comparison

sort_ignore_case.py

Using list’s sort method with a key

March 19, 2019 Sprenkle - CSCI111 14
sort_ignore_case.py

words = ["Washington", "and", "Lee", "computer", "science”]
words.sort()

print("Words in Python str-standard sorted order:”)
for word in words:

print(word)
print()

print("Words in sorted order, ignoring upper and lower case:")

words.sort(key=str.lower)

for word in words:
print(word) Method is named as

Classname.methodname

8

Using list’s sort method with a key

March 19, 2019 Sprenkle - CSCI111 15sort_ignore_case.py

words = ["Washington", "and", "Lee", "computer", "science"]
words.sort()

print("Words in Python str-standard sorted order:”)
for word in words:

print(word)
print()

print("Words in sorted order, ignoring upper and lower case:")

words.sort(key=str.lower)

for word in words:
print(word)

Words in Python str-standard sorted order:
Lee
Washington
and
computer
science

Words in sorted order, ignoring upper and
lower case:
and
computer
Lee
science
Washington

Review: Defining our own classes
• Where do we define the data that is needed to

represent every object of a class?
ØHow do we access that data?
• Keyword that must be the first parameter of

every defined method?
• What are defined methods like?
• Special method name for constructor?
• Special name for method that helps with

printing?

March 19, 2019 Sprenkle - CSCI111 16

9

Review: Defining our own classes
• Where do we define the data that is needed to represent

every object of a class?
Ø How do we access that data?
Ø Answer: In the constructor. Use self._data to represent that

data. Can access that data in other methods as self._data
• Keyword that must be the first parameter of every defined

method?
Ø self

• What are defined methods like?
Ø Answer: functions

• Special method name for constructor?
Ø __init__

• Special name for method that helps with printing?
Ø __str__(self) – returns a string representation of the object

March 19, 2019 Sprenkle - CSCI111 17

Card Class (Incomplete)

March 19, 2019 Sprenkle - CSCI111 18

class Card:
""" A class to represent a standard playing card.
The ranks are ints: 2-10 for numbered cards, 11=Jack,

12=Queen, 13=King, 14=Ace.
The suits are strings: 'clubs', 'spades', 'hearts',

'diamonds’."""
def __init__(self, rank, suit):

"""Constructor for class Card takes int rank and
string suit."""
self._rank = rank
self._suit = suit

def getRank(self):
"Returns the card’s rank."
return self._rank

def getSuit(self):
"Returns the card’s suit."
return self._suit

Doc String

card.py

M
et
ho

ds

Identify the instance variables
• How do we use them in other

Card methods?

10

Card Class (Incomplete)

March 19, 2019 Sprenkle - CSCI111 19

class Card:
""" A class to represent a standard playing card.
The ranks are ints: 2-10 for numbered cards, 11=Jack,

12=Queen, 13=King, 14=Ace.
The suits are strings: 'clubs', 'spades', 'hearts',

'diamonds’."""
def __init__(self, rank, suit):

"""Constructor for class Card takes int rank and
string suit."""
self._rank = rank
self._suit = suit

def getRank(self):
"Returns the card’s rank."
return self._rank

def getSuit(self):
"Returns the card’s suit."
return self._suit

Doc String

card.py

M
et
ho

ds

Identify the instance variables
• How do we use them in other

Card methods?

Convention: instance variables are
named beginning with _

Review: Algorithm for Creating Classes
1. Identify need for a class
2. Identify state or attributes of a class/an object in that

class
Ø Write the constructor (__init__) and __str__ methods
Ø Test those methods

3. Identify methods (i.e., functionality) the class should
provide
Ø How will a user call those methods (parameters, return

values)?
• Develop API

4. Implement, test one method
Ø Repeat until have complete API

March 19, 2019 Sprenkle - CSCI111 20

11

Testing our methods
• Can test similarly to how we tested functions

March 19, 2019 Sprenkle - CSCI111 21

test the str method
test.testEqual(str(c1), "Ace of spades")
test.testEqual(str(c2), "King of hearts")
test.testEqual(str(c3), "2 of diamonds")

test get rummy value
test.testEqual(c1.getRummyValue(), 15)
test.testEqual(c2.getRummyValue(), 10)
test.testEqual(c3.getRummyValue(), 5)

test the card color
test.testEqual(c1.getCardColor(), "black")
test.testEqual(c2.getCardColor(), "red")
test.testEqual(c3.getCardColor(), "red")

Lab Overview
1. Implement partial solution using a dictionary to map the

name to its count
Ø handles basic set up of solution, including reading and

processing file
2. Implement a class that packages the name (a key) and its

count together
Ø Data and functionality given
Ø Test the class

3. Implement Step 1 with objects of class you created in
Step 2
Ø Complete solution

4. Graph data generated from Step 3
5. Make web page with graphs

March 19, 2019 Sprenkle - CSCI111 22

12

Graphing
• I provide code that will create a bar chart using

the matplotlib library
ØgenerateFreqGraphs.py,
graphing_example.py

• You will need to provide the appropriate
information to the Python code to generate the
graph
Ø You can either
• Use the user interface
• Write code to directly call the plotFrequencyData

function

March 19, 2019 Sprenkle - CSCI111 23

Graphing: Using the User Interface

March 19, 2019 Sprenkle - CSCI111 24

$ python3 generateFreqGraphs.py
What is the name of your properly-formatted data file?
data/lastnames.dat
How many results do you want to display? 6
What is the title of this graph? Most Common Last Names at
W&L
What is the y-axis label of this graph? Number of Students
['Smith', '16']
['Jones', '10']
['Kim', '8']
['Johnson', '8']
['Williams', '8']
['Miller', '8']

Generates Graph:

Save generated graph
by clicking save icon

13

Graphing: Using Function Calls

March 19, 2019 Sprenkle - CSCI111 25

from generateFreqGraphs import *

labels, values = processDataFile("data/lastnames.dat", 6)

plot = plotFrequencyData(labels, values, \
"Most Commonly Occurring Last Names at W&L", \
"Number of Students")

graphing_example.py

Overview
1. Implement partial solution using a dictionary to map the

name to its count
Ø handles basic set up of solution, including reading and

processing file
2. Implement a class that packages the name (a key) and its

count together
Ø Data and functionality given
Ø Test the class

3. Implement Step 1 with objects of class you created in
Step 2
Ø Complete solution

4. Graph data generated from Step 3
5. Make web page with graphs

March 19, 2019 Sprenkle - CSCI111 26

14

FNL

March 19, 2019 Sprenkle - CSCI111 27

COMPUTATIONAL THINKING

