
1

Objectives

• Introduction to
ØProblem solving
ØProgramming languages

Jan 20, 2021 Sprenkle - CSCI111 1

1

Typical Class Period Organization

1. Pearls of wisdom from Professor Sprenkle
2. Review in pairs

Ø Consult your notes, slides from recent classes (see
course web site)

3. Review as a class
4. New stuff!

Ø Some think-pair-share work

Jan 20, 2021 Sprenkle - CSCI111 2

2

2

Course Logistics: In-person Preferred

• Virtual for staggered start, quarantining,
immunity concerns, sickness, …
• After class, sanitize your spot

ØAlcohol wipes in the back

Jan 20, 2021 Sprenkle - CSCI111 3

3

Course Logistics: Handouts

• On Canvas under Files à handouts
• A few copies in back of the room

ØCopies: not great solution
• Notes

Ø Slide number won’t always line up with slides
ØWon’t always get to all
ØDon’t look ahead

Jan 20, 2021 Sprenkle - CSCI111 4

4

3

Lab Review

• What are the names of our student assistants
and tech support person?
• What OS do the lab computers run?
• What is ssh?
• Why do we need an X server?
• What is computer science?
• What is this course about?
• What is an algorithm?

Jan 20, 2021 Sprenkle - CSCI111 5

5

Review:
Computational Problem Solving 101
• Algorithm: a well-defined recipe for solving a

problem
ØHas a finite number of steps
ØCompletes in a finite amount of time

• Program
ØAn algorithm written in a programming language
ØAlso called code
Ø Large programs, solving many problems together à

application

Jan 20, 2021 Sprenkle - CSCI111 6

6

4

Jan 20, 2021 Sprenkle - CSCI111

Algorithms: Input and Output

• Algorithms often have a defined input and
output
• Correct algorithms give the intended output for a

set of input
• Example: Multiply by 10

Ø I/O for a correct algorithm:
• More examples

Ø averaging numbers, recipes

algorithm

I O

Input Output
5 50
.32
x

7

Input Output

7

Jan 20, 2021 Sprenkle - CSCI111

Algorithms: Input and Output

• Algorithms often have a defined input and
output
• Correct algorithms give the intended output for a

set of input
• Example: Multiply by 10

Ø I/O for a correct algorithm:
• More examples

Ø averaging numbers, recipes

algorithm

I O

Input Output
5 50
.32 3.2
x 10x

8

Input Output

8

5

How Do You Draw X?

• You were given a “secret object” in the email
with your computer science account password
• Write down the instructions for someone to

draw that object
ØDescribe the steps that they would take
Ø You cannot reveal what they are drawing
Ø The person only has a drawing utensil (pen/pencil)

and paper

Jan 20, 2021 Sprenkle - CSCI111 9

9

Win, Lose, or Draw!

• Roles
Ø Instructor: Read your instructions to your partner

who will do what you say
• You cannot look at what they’re drawing

ØDrawer: Do exactly what instructor says and only
what they say

• As far as you can get in 3 minutes
Ø Then, switch roles!

Jan 20, 2021 Sprenkle - CSCI111 10

10

6

Drawing Instructions are Algorithms!

• What was good about your algorithm?

• What would you change about your algorithm if
you were to write it again?

• What did you learn about algorithms in general?

Jan 20, 2021 Sprenkle - CSCI111 11

11

Discussion of Drawing Directions
• The computer: a blessing and a curse

ØRecognize and meet the challenge!
• Be unambiguous, descriptive

ØMust be clear for the computer to understand
Ø “Do what I meant! Not what I said!”
• Motivates programming languages

• Creating/Implementing an algorithm
ØBreak down pieces
Ø Try it out
ØRevise

Jan 20, 2021 Sprenkle - CSCI111 12

12

7

Discussion of Drawing Directions

• Steps need to be done in a particular order
• Be prepared for special cases

ØAny other special cases we didn’t discuss?
• Aren’t necessarily spares in real life

ØNeed to write correct algorithms!

• Reusing similar techniques
ØDo the same thing with a little twist

• Looping
Ø For repeating the same action

Jan 20, 2021 Sprenkle - CSCI111 13

13

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 20, 2021 Sprenkle - CSCI111 14

An overview for the
semester!

14

8

Other Lessons To Remember

• A cowboy’s wisdom: Good judgment comes from
experience
ØHow can you get experience?
ØBad judgment works every time

• Program errors can have bad effects
ØPrevent the bad effects--especially before you turn in

your assignment!

Jan 20, 2021 Sprenkle - CSCI111 15

15

Computational Problem Solving 101

• Computational Problem:
A problem that can be solved by logic

• To solve the problem:
ØCreate a model of the problem
ØDesign an algorithm for solving the problem using

the model
ØWrite a program that implements the algorithm

Jan 20, 2021 Sprenkle - CSCI111 16

16

9

Jan 20, 2021 Sprenkle - CSCI111

Why Do We Need Programming
Languages?
• Computers can’t understand English

Ø Too ambiguous

• Humans can’t easily write machine code
Problem Statement (English)

Machine code/Central Processing Unit (CPU)

000000 00001 00010 00110 00000 100000
17

Live Jazz!

17

Jan 20, 2021 Sprenkle - CSCI111

Why Do We Need Programming
Languages?
• Computers can’t understand English

Ø Too ambiguous

• Humans can’t easily write machine code
Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)
18

18

10

Jan 20, 2021 Sprenkle - CSCI111

Why Do We Need Programming
Languages?
• Computers can’t understand English

Ø Too ambiguous

• Humans can’t easily write machine code
Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

Programmer (YOU!)
translates from
problem to algorithm
(solution) to program

Python interpreter
translates into bytecode

19

19

Jan 20, 2021 Sprenkle - CSCI111

Why Do We Need Programming
Languages?
• Computers can’t understand English

Ø Too ambiguous

• Humans can’t easily write machine code
Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)
20

Python interpreter
executes the bytecode
in a “virtual machine”

Programmer (YOU!)
translates from
problem to algorithm
(solution) to program

Python interpreter
translates into bytecode

20

11

Jan 20, 2021 Sprenkle - CSCI111

Programming Languages
• Programming language:

Ø Specific rules for what is and isn’t allowed
ØMust be exact
ØComputer carries out commands as they are given
• Syntax: the symbols given
• Semantics: what it means
• Example:

Ø III * IV means 3 × 4 which evaluates to 12
Ø cp src dest means copy the file named src to dest
• Programming languages are unambiguous

21

21

Another Syntax and Semantics Example

Jan 20, 2021 Sprenkle - CSCI111 22

What is the syntax? What is the semantics?

22

12

Jan 20, 2021 Sprenkle - CSCI111

Python Is …

• A programming language
Ø3rd most popular programming language

• An interpreter (which is a program) that
understands and executes Python code

23

http://www.tiobe.com/tiobe-index/

January Headline: Python is TIOBE's
Programming Language of 2020!

23

Jan 20, 2021 Sprenkle - CSCI111

Python
• A common interpreted programming language

ØRuns on many operating systems
• First released by Guido van Rossum in 1991
• Named after Monty Python’s Flying Circus
• Minimalist syntax, emphasizes readability
• Flexible, fast, useful language
• Used by scientists, engineers, systems

programmers

24

24

13

Jan 20, 2021 Sprenkle - CSCI111

Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax
• Reports syntax errors

2. Executes expression(s)
• Runtime errors (e.g., divide by 0)
• Semantic errors (not what you meant)

Interpreter
(python)

Expression

Output Executable
bytecode

25

25

Jan 20, 2021 Sprenkle - CSCI111

Two Modes to Execute Python Code

• Interactive: using the interpreter
Ø Try out Python expressions

• Batch: execute scripts (i.e., files containing
Python code)
ØWhat we’ll usually write

26

26

14

Jan 20, 2021 Sprenkle - CSCI111

Interactive Mode
Run by typing “python3” in terminal

Type in the expressionPython
displays the
result

Error Message:
We’ll talk more later about
why this is an error

print: Special function to display output
27

27

Jan 20, 2021 Sprenkle - CSCI111

Batch Mode

1. Programmer types a program/script into a text
editor (jEdit or IDLE).

2. An interpreter turns each expression into
bytecode and then executes each expression

Python
Interpreter

Program
text file

program.py

Output

Text Editor
(e.g., jEdit or IDLE)

Executable
bytecode

One “line”
at a time

• Get feedback about which line
caused the problem

• Interpreter stops
validating/executing lines

28

28

15

Jan 20, 2021 Sprenkle - CSCI111

Parts of an Algorithm
èInput, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using

• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

29

29

Printing Output
• print is a special command or a function

ØDisplays the result of expression(s) to the terminal
ØAutomatically adds a ‘\n’ (carriage return) after it’s

printed
• Relevant when have multiple print statements

• print("Hello, class")

Jan 20, 2021 Sprenkle - CSCI111 30

string literal

Syntax: a set of double quotes
Semantics: represents text

30

16

Jan 20, 2021 Sprenkle - CSCI111

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using

• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

31

31

Primitive Data Types

• Primitive data types represent data
• Python provides some basic or primitive data

types
• Broadly, the categories of primitive types are

ØNumeric
ØBoolean
Ø Strings

Jan 20, 2021 Sprenkle - CSCI111 32

32

17

Numeric Primitive Types

Jan 20, 2021 Sprenkle - CSCI111 33

Python Data
Type

Description Examples

int Plain integers (32-bit
precision)

-214, -2, 0, 2, 100

float Real numbers .001, -1.234, 1000.1, 0.00, 2.45

complex Imaginary numbers (have
real and imaginary part) 1j * 1J à (-1+0j)

33

How big (or small or precise) can we get?

• Computer cannot represent all values
• Problem: Computer has a finite capacity

Ø The computer only has so much memory that it can
devote to one value.

Ø Eventually, reach a cutoff
• Limits size of value
• Limits precision of value

Jan 20, 2021 Sprenkle - CSCI111 34

Example: in Python interpreter, .1 + .1 + .1 yields 0.30000000000000004.
* In reality, computers represent data in binary.

0 0 0 0 0 3 .1 4 1 5 9 2 6 5

PI has more decimals,
but we’re out of space!

34

18

Strings: str
• Indicated by double quotes " " or single quotes ' '
• Treat what is in the " " or ' ' literally

ØKnown as string literals
• Examples:

Ø "Hello, world!"
Ø 'c'
Ø "That is Buddy's dog."

Jan 20, 2021 Sprenkle - CSCI111 35

Single quote must be
inside double quotes*

* Exception later

35

Booleans: bool
• 2 values

ØTrue
ØFalse

• Much more on these later…

Jan 20, 2021 Sprenkle - CSCI111 36

36

19

What is the value’s type?

Jan 20, 2021 Sprenkle - CSCI111 37

Value Type
52

-0.01
4+6j
"3.7"

4047583648
True

'false'

37

Looking Ahead

• Lab 0 due Friday
• Survey (on Canvas) due Friday
• Broader Issue write up on Canvas due Friday at

11 a.m.

Jan 20, 2021 Sprenkle - CSCI111 38

38

