
1/25/21

1

Objectives
• Assignments and Arithmetic
• Software development practices

Ø Testing
ØDebugging
Ø Iteration

• User input

Jan 25, 2021 Sprenkle - CSCI111 1

Get handouts from Canvas

1

Review
• How do we tell our program to display output?
• How can we store information?

Ø What is the syntax to do that?
• What are the rules and conventions for variable

names?
Ø What is another term for “variable names”?
Ø Describe characteristics of good variable names

• What are the primitive types of information in
Python?

• What are the arithmetic operators? Describe their
syntax and semantics.

Jan 25, 2021 Sprenkle - CSCI111 2

2

1/25/21

2

Review: Numeric Arithmetic Operations

Jan 25, 2021 Sprenkle - CSCI111 3

Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder (“mod”)

** Exponentiation (power)

3

NOT Math Class
• Need to write out all operations explicitly

Ø In math class, a (b+1) meant a*(b+1)

Jan 25, 2021 Sprenkle - CSCI111 4

Write this way in Python

4

1/25/21

3

What are the values?
• After executing the following statements, what

are the values of each variable?
Ør = 5
Øs = -1 + r
Øt = r + s
Øs = 2
Ør = -7

Jan 25, 2021 Sprenkle - CSCI111 5

How can we confirm that we’re right?

5

What are the values?
• After executing the following statements, what

are the values of each variable?
Ør = 5
Øs = -1 + r
Øt = r + s
Øs = 2
Ør = -7

Jan 25, 2021 Sprenkle - CSCI111 6

Try these expressions out in interactive mode!

6

1/25/21

4

What are the values?
• After executing the following statements, what

are the values of each variable?
Øa = 5
Øy = a + -1 * a
Øz = a + y / 2
Øa = a + 3
Øy = (7+x)*z
Øx = z*2

Jan 25, 2021 Sprenkle - CSCI111 7

Think-Pair-Share

7

What are the values?
• After executing the following statements, what

are the values of each variable?
Øa = 5
Øy = a + -1 * a
Øz = a + y / 2
Øa = a + 3
Øy = (7+x)*z
Øx = z*2

Jan 25, 2021 Sprenkle - CSCI111 8

Runtime error:
x doesn’t have a value yet!

•We say “x was not initialized”
• Can’t use a variable on RHS until

seen on LHS!*

8

1/25/21

5

Jan 25, 2021 Sprenkle - CSCI111 9

Programming Building Blocks
• Each type of statement is a building block

Ø Initialization/Assignment
• So far: Arithmetic

ØPrint

Assign.

print

9

Jan 25, 2021 Sprenkle - CSCI111 10

print

Programming Building Blocks
• Each type of statement is a building block

Ø Initialization/Assignment
• So far: Arithmetic

ØPrint
• We can combine them to create more

complex programs
Ø Solutions to problems

Assign.

Assign.
Assign.
print
Assign.

print

10

1/25/21

6

Bringing It All Together:
A simple program or script

Jan 25, 2021 Sprenkle - CSCI111 11

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

Comments: human-readable descriptions.
Computer does not execute.

What does this
program output?

11

Bringing It All Together:
A simple program or script

Jan 25, 2021 Sprenkle - CSCI111 12

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

If no print statements, the program
would not output anything!

12

1/25/21

7

Jan 25, 2021 Sprenkle - CSCI111

Batch Mode: Execute Scripts

1. Programmer saves a program/script into a text file
using a text editor.

2. An interpreter turns each expression in file into
bytecode and then executes each expression

Python
Interpreter

Program
text file

program.py

Output

Text Editor
(e.g., jEdit or IDLE)

Executable
bytecode

One “line”
at a time

If error,
• Get feedback about which line

caused the problem
• Interpreter stops

validating/executing lines
13

13

Bringing It All Together:
A simple program or script

Jan 25, 2021 Sprenkle - CSCI111 14

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

alternative to the previous program
print("x * y =", x * y)

arith_and_assign2.py

Comments: human-readable descriptions.
Computer does not execute.

This print statement is slightly more complicated
than previous example.
Goal: keep each statement simple so that it’s easier to find errors.

14

1/25/21

8

Formalizing Process of
Developing Computational Solutions
1. Create a sketch of how to solve the problem

(the algorithm)

Jan 25, 2021 Sprenkle - CSCI111 15

Use comments to describe the steps

15

Formalizing Process of
Developing Computational Solutions
1. Create a sketch of how to solve the problem

(the algorithm)
2. Fill in the details in Python

Jan 25, 2021 Sprenkle - CSCI111 16

Use comments to describe the steps

16

1/25/21

9

It worked! J Or, it didn’t L
• Sometimes the program doesn’t work
• Types of programming errors:

Ø Syntax error
• Interpreter shows where the problem is

Ø Logic/semantic error
•answer = 2+3
• No, answer should be 2*3

Ø Exceptions/Runtime errors
•answer = 2/0
• Undefined variable name

Jan 25, 2021 Sprenkle - CSCI111 17

17

Testing Process

Jan 25, 2021 Sprenkle - CSCI111 18

Program

• Test case:
• input used to test the program
• expected output given that input

• Verify if output is what you expected

Verify output

Input

Expected
Output

Test Case

Output
execute

18

1/25/21

10

Testing Process

Jan 25, 2021 Sprenkle - CSCI111 19

Program

• Test case:
• input used to test the program
• expected output given that input

• Verify if output is what you expected
• Goal: create good test cases that will reveal if there is a

problem in your code

Verify output

OutputInput

Expected
Output

Test Case

If output is not what you expect…

execute

19

Debugging
• After identifying errors during testing
• Identify the problems in your code

Ø Edit the program to fix the problem
Ø Re-execute/test until all test cases pass

• The error is called a “bug” or a “fault”
• Diagnosing and fixing error is called debugging

Jan 25, 2021 Sprenkle - CSCI111 20

Interpreter
(python)

Program
text file

program.py
Output

Text Editor
(jEdit or IDLE)

ERROR! (from testing)

Identify fault, fix it!

20

1/25/21

11

Formalizing Process of
Developing Computational Solutions
1. Create a sketch of how to solve the problem

(the algorithm)
2. Fill in the details in Python
3. Test code using good, varied test cases to try to

find errors in code
4. If program’s output does not match the

expected output, debug to find the problem and
fix it
Ø Repeat testing and debugging until no more faults

Jan 25, 2021 Sprenkle - CSCI111 21

Use comments to describe the steps

21

Practice: A Computational Algorithm
• Find the average of two numbers
• Start the Process:

1. Create a sketch of how to solve the problem (the
algorithm)

2. Fill in the details in Python
3. Come up with good test cases for the problem

Jan 25, 2021 Sprenkle - CSCI111 22

22

1/25/21

12

Practice: A Computational Algorithm
• Find the average of two numbers
• Test Cases

Jan 25, 2021 Sprenkle - CSCI111 23

Input
num1 num2 Expected Output

23

A Computational Algorithm
• Algorithm for finding the average of two

numbers:
1. “Hard-code” two numbers

• Later: get the two numbers from user
2. Calculate average
3. Print average

• Test cases for finding the average
Ø Test both integers
Ø Test with at least one float
Ø Test numbers less than or equal to 0

Jan 25, 2021 Sprenkle - CSCI111 24average2.py
24

1/25/21

13

Good Development Practices
• Design the algorithm

ØBreak into pieces

• Implement and Test each piece separately
Ø Identify the best pieces to make progress
Ø Iterate over each step to improve it

• Write comments FIRST for each step
Ø Elaborate on what you’re doing in comments when

necessary

Jan 25, 2021 Sprenkle - CSCI111 25

average2.py

25

When to Use Comments
• Document the author, high-level description of

the program at the top of the program

• Provide an outline of an algorithm
Ø Separates the steps of the algorithm

• Describe difficult-to-understand code

Jan 25, 2021 Sprenkle - CSCI111 26

26

1/25/21

14

Formalizing Process of
Developing Computational Solutions
1. Create a sketch of how to solve the problem (the

algorithm)
2. Fill in the details in Python
3. Test code using good, varied test cases to try to find

errors in code
4. If program’s output does not match the expected

output, debug to find the problem and fix it
Ø Repeat testing and debugging until no more faults

5. Make code “better”, test again
Ø Better variable names, output, comments

Jan 25, 2021 Sprenkle - CSCI111 27

27

Design Patterns
• General, repeatable solution to a commonly

occurring problem in software design
Ø Template for solution

Jan 25, 2021 Sprenkle - CSCI111 28

28

1/25/21

15

Design Patterns
• General, repeatable solution to a commonly

occurring problem in software design
Ø Template for solution

• Example (Standard Algorithm)
ØGet input from user
ØDo some computation
ØDisplay output

Jan 25, 2021 Sprenkle - CSCI111 29

print
Assign.
Assign. x = input("…")

ans = …
print(ans)

29

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 25, 2021 Sprenkle - CSCI111 30

30

1/25/21

16

More on Arithmetic Operations

Jan 25, 2021 Sprenkle - CSCI111 31

Symbol Meaning Associativity

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

% Remainder (“mod”) Left

** Exponentiation (power) Right

Precedence rules: P E - MD% AS
negation

31

More on Arithmetic Operations

Jan 25, 2021 Sprenkle - CSCI111 32

Symbol Meaning Associativity

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

% Remainder (“mod”) Left

** Exponentiation (power) Right

Precedence rules: P E - MD% AS

Associativity matters
when you have the same
operation multiple times.

It tells you where you
should start computing.

negation

32

1/25/21

17

Two Division Operators

/ Float Division
• Result is a float
• Examples:

Ø 6/3 à 2.0
Ø 10/3 à

3.3333333333333335
Ø 3.0/6.0 à 0.5
Ø 19/10 à 1.9

// Integer Division
• Result is an int
• Examples:

Ø 6//3 à 2
Ø 10//3 à 3
Ø 3.0//6.0 à 0.0
Ø 19//10 à 1

Jan 25, 2021 Sprenkle - CSCI111 33

Integer division is the default
division used in many

programming languages

33

Python Division Practice

• a = 12//5
• 12 // 4 * 5.0
• b = 6/12
• 6.0//12 * 5.0
• z = a / b

Jan 25, 2021 Sprenkle - CSCI111 34

34

1/25/21

18

Looking Ahead
• Prelab 1 due tomorrow before lab
• Lab 1 due Friday
• Broader Issue due Friday

Jan 25, 2021 Sprenkle - CSCI111 35

35

