
1

Objectives
• Defining your own functions

ØControl flow
Ø Scope, variable lifetime
Ø Testing

Feb 10, 2021 Sprenkle - CSCI111 1

1

Review
• What are benefits of functions?
• How do we create our own functions?

ØHow do we indicate that our function requires input?
ØHow do we indicate that our function has output?

• What’s the difference between output from a
function and output from a program?

• How do we call a function we created?

Feb 10, 2021 Sprenkle - CSCI111 2

2

2

Function Definition Example without Output

Feb 10, 2021 Sprenkle - CSCI111 3

def moveCircle(circle, newCenter):
"""
Moves a Circle object to a new location.
circle: the Circle to be moved
newCenter: the center point of where circle
should be moved
"""
centerPoint = circle.getCenter()

diffInX = newCenter.getX() - centerPoint.getX()
diffInY = newCenter.getY() - centerPoint.getY()

circle.move(diffInX, diffInY)

Keyword
Function

Name
Input Name/
Parameter

Bo
dy

(o
r f

un
ct

io
n

de
fin

iti
on

)

Function header

Function documentation

3

Function Definition Example with Output

Feb 10, 2021 Sprenkle - CSCI111 4

def average2(num1, num2):
"""
Parameters: two numbers to be averaged.
Returns the average of two numbers
"""

average = (num1 + num2)/2
return average

Keyword Function
Name

Input Name/
Parameter

Bo
dy

(o
r f

un
ct

io
n

de
fin

iti
on

)

Keyword:
How to give output

Function header

Output

Function documentation

4

3

Review: return vs print
• In general, whenever we want output from a

function, we’ll use return
Ø Results in a more flexible, reusable function
Ø Let whoever called the function figure out what to

display

• Use print for
Ø Debugging your function (then remove)

• Otherwise, unintended side effect of calling the function
Ø When you have a function that is supposed to display

something
• Sometimes, that is what you want.

Feb 10, 2021 Sprenkle - CSCI111 6

6

Function Input and Output
• What does this function do?
• What is its input? What is its output?

Feb 10, 2021 Sprenkle - CSCI111 7

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END + EIEIO)
print()

Constants and comments
are in example program

What does this function do if called as printVerse("pig", "oink")?
As printVerse("oink", "pig")?

7

4

Function Input and Output
• 2 inputs: animal and sound
• 0 outputs

Ø Displays something but does not return anything (None)

Feb 10, 2021 Sprenkle - CSCI111 8

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END + EIEIO)
print() Function exits here

8

Arithmetic Example
• Our favorite expression: i² + 3j – 5

1. Define the function:
a. What does the function do?
b. What is its input?
c. What is its output?

2. Call the function

Feb 10, 2021 Sprenkle - CSCI111 9

our_favorite_expression.py

9

5

PROGRAM ORGANIZATION

Feb 10, 2021 Sprenkle - CSCI111 10

10

Where are Functions Defined?
• Functions can go inside program script

Ø If no main() function, defined before use/called
•average2.py

Ø If main() function, defined anywhere in script

• Functions can go inside a separate module

Feb 10, 2021 Sprenkle - CSCI111 11

11

6

Program Organization: main function
• In many programming languages, you put the

“driver” for your program in a main function
Ø You can (and should) do this in Python as well

• Typically main functions are defined at the top of
your program
ØReaders can quickly see an overview of what

program does

• main usually takes no arguments
Ø Example:

Feb 10, 2021 Sprenkle - CSCI111 12

def main():

12

Using a main Function
• Call main() at the bottom of your program
• Side effects:

ØDo not need to define functions before main
function

Ø main can “see” all other functions
• Note: main is a function that calls other

functions
ØAny function can call other functions

Feb 10, 2021 Sprenkle - CSCI111 13

13

7

Example program with a main() function

Feb 10, 2021 Sprenkle - CSCI111 14

def main():
printVerse("dog", "ruff")
printVerse("duck", "quack")

animal_type = "cow"
animal_sound = "moo"
printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
print(BEGIN_END, EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END, EIEIO)
print()

main()
oldmac.py

Constants and comments
are in example program

In what order does this program execute?
What is output from this program?

14

Example program with a main() function

Feb 10, 2021 Sprenkle - CSCI111 15

def main():
printVerse("dog", "ruff")
printVerse("duck", "quack")

animal_type = "cow"
animal_sound = "moo"
printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
print(BEGIN_END, EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END, EIEIO)
print()

main() oldmac.py

1. Define (store) main
2. Define (store) printVerse
3. Call main function
4. Execute main function
5. Call, execute printVerse

…

1

2

3

4

5

15

8

Feb 10, 2021 Sprenkle - CSCI111 16

Summary: Program Organization
• Larger programs require functions to maintain

readability
Ø Use main() and other functions to break up program into

smaller, more manageable chunks
Ø “Abstract away” the details

• As before, can still write smaller scripts without any
functions
Ø Can try out functions using smaller scripts

• Need the main() function when using other functions
to keep “driver” at top
Ø Otherwise, functions need to be defined before use

16

VARIABLE LIFETIMES AND SCOPE

Feb 10, 2021 Sprenkle - CSCI111 17

17

9

What does this program output?
def main():

x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Feb 10, 2021 Sprenkle - CSCI111 18mystery.py

18

Function Variables

Feb 10, 2021 Sprenkle - CSCI111 19

def main():
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Why can we name two
different variables x?

mystery.py

19

10

Tracing through Execution

Feb 10, 2021 Sprenkle - CSCI111 20

def main():
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

D
ef

in
es

 fu
nc

tio
ns

When you call main(), that means you
want to execute this function

20

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 10, 2021 Sprenkle - CSCI111 21

main

Memory stack

x 10

Function names are like last names
Define the SCOPE of the variable

Variable names
are like first names

21

11

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 10, 2021 Sprenkle - CSCI111 22

main x 10

sum
Evens

limit 10

Called the function sumEvens
Add its parameters to the stack

22

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 10, 2021 Sprenkle - CSCI111 23

main x 10

sum
Evens

total 0
limit 10

23

12

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 10, 2021 Sprenkle - CSCI111 24

main x 10

sum
Evens

x 0
total 0
limit 10

24

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 10, 2021 Sprenkle - CSCI111 25

main x 10

sum
Evens

x 8
total 20
limit 10

25

13

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 10, 2021 Sprenkle - CSCI111 26

main sum 20
x 10

Function sumEvens returned
• no longer have to keep track of

its variables on stack
• lifetime of those variables is over

26

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 10, 2021 Sprenkle - CSCI111 27

main sum 20
x 10

27

14

Variable Scope
• Functions can have the same parameter and variable

names as other functions
Ø Need to look at the variable’s scope to determine which one

you’re looking at
Ø Use the stack to figure out which variable you’re using

• Scope levels
Ø Local scope (also called function scope)

• Can only be seen within the function
Ø Global scope (also called file scope)

• Whole program can access
• More on these later

Feb 10, 2021 Sprenkle - CSCI111 28

28

Feb 10, 2021 Sprenkle - CSCI111 29

Variable Scope
• Know “lifetime” of variable

Ø Only during execution of function
Ø Related to idea of “scope”

• Consider: how many functions probably use a
variable like x or i? What would the impact be on
our programs if all variables had global scope?
Ø Example: round(x, n)

• In general, our only global variables will be
constants because we don’t want them to change
value
Ø e.g., EIEIO

29

15

TESTING FUNCTIONS

Feb 10, 2021 Sprenkle - CSCI111 30

30

Testing Functions
• Functions make it easier for us to test our code
• We can write code to test the functions

Ø Test Case:
• Input: parameters
• Expected Output: what we expect to be returned

ØOr if state changed as we expected
ØWe can verify the function programmatically

• “programmatically” – automatically execute test cases
and verify that the actual returned result is what we
expected

• No user input required!

Feb 10, 2021 Sprenkle - CSCI111 31

31

16

test Module
• Not a standard module

Ø Included with our textbook
ØMore sophisticated testing modules but this is

sufficient for us
• Function:

ØtestEqual(actual, expected)
• Parameters: actual and expected results for a

function.
• Displays "Pass" and returns True if the test case

passes.
• Displays error message, with expected and actual

results, and returns False if test case fails.
Feb 10, 2021 Sprenkle - CSCI111 32

32

Example: Testing sumEvens
import test
…
def testSumEvens():

actual = sumEvens(10)
expected = 20
test.testEqual(actual, expected)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

Feb 10, 2021 Sprenkle - CSCI111 33

testSumEvens.py

This is the actual result
from our function

This is what we expect the result to be

What are other good test cases?

33

17

Summary: Why Write Functions?
• Allows you to break up a problem into smaller, more
manageable parts

• Makes your code easier to understand
• Hides implementation details (abstraction)

Ø Provides interface (input, output)

• Makes part of the code reusable so that you:
Ø Only have to write function code once
Ø Can debug it all at once

• Isolates errors
Ø Can make changes in one function (maintainability)

Feb 10, 2021 Sprenkle - CSCI111 34

Similar to benefits of OO Programming

34

Evolving General Design Patterns
• Former general design pattern:

• Now general design pattern:

Feb 10, 2021 Sprenkle - CSCI111 35

1. Optionally, get user input
2. Do some computation
3. Display results

1. Optionally, get user input
2. Do some computation by calling functions, get results
3. Display results

35

18

Looking Ahead
• BI – Google Search
• Lab 3 due Friday
• Exam next Friday

ØPrep document up soon

Feb 10, 2021 Sprenkle - CSCI111 36

36

