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Objectives
• Defining your own functions

ØControl flow
Ø Scope, variable lifetime
Ø Testing
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Review
• What are benefits of functions?
• How do we create our own functions?

ØHow do we indicate that our function requires input?
ØHow do we indicate that our function has output?

• What’s the difference between output from a 
function and output from a program?

• How do we call a function we created?
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Function Definition Example without Output
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def moveCircle( circle, newCenter ):
"""
Moves a Circle object to a new location. 
circle: the Circle to be moved
newCenter: the center point of where circle 
should be moved
"""
centerPoint = circle.getCenter()

diffInX = newCenter.getX() - centerPoint.getX()
diffInY = newCenter.getY() - centerPoint.getY()

circle.move(diffInX, diffInY)
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Function Definition Example with Output
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def average2(num1, num2):
"""
Parameters: two numbers to be averaged.
Returns the average of two numbers
"""

average = (num1 + num2)/2
return average
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Review: return vs print
• In general, whenever we want output from a 

function, we’ll use return
Ø Results in a more flexible, reusable function
Ø Let whoever called the function figure out what to 

display

• Use print for
Ø Debugging your function (then remove)

• Otherwise, unintended side effect of calling the function
Ø When you have a function that is supposed to display 

something
• Sometimes, that is what you want.
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Function Input and Output
• What does this function do?
• What is its input?  What is its output?
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def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END + EIEIO)
print()

Constants and comments 
are in example program

What does this function do if called as printVerse("pig", "oink")?
As printVerse("oink", "pig")?
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Function Input and Output
• 2 inputs: animal and sound
• 0 outputs

Ø Displays something but does not return anything (None)
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def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END + EIEIO)
print() Function exits here

8

Arithmetic Example
• Our favorite expression: i² + 3j – 5

1. Define the function:
a. What does the function do?
b. What is its input?
c. What is its output?

2. Call the function
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our_favorite_expression.py
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PROGRAM ORGANIZATION
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Where are Functions Defined?
• Functions can go inside program script

Ø If no main() function, defined before use/called
•average2.py

Ø If main() function, defined anywhere in script

• Functions can go inside a separate module
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Program Organization: main function
• In many programming languages, you put the 

“driver” for your program in a main function
Ø You can (and should) do this in Python as well

• Typically main functions are defined at the top of 
your program
ØReaders can quickly see an overview of what 

program does

• main usually takes no arguments
Ø Example:
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def main():
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Using a main Function
• Call main() at the bottom of your program
• Side effects:

ØDo not need to define functions before main
function

Ø main can “see” all other functions
• Note: main is a function that calls other 

functions
ØAny function can call other functions  
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Example program with a main() function
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def main():
printVerse("dog", "ruff")
printVerse("duck", "quack")

animal_type = "cow"
animal_sound = "moo"
printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
print(BEGIN_END, EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END, EIEIO)
print()

main()
oldmac.py

Constants and comments 
are in example program

In what order does this program execute?
What is output from this program?
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Example program with a main() function
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def main():
printVerse("dog", "ruff")
printVerse("duck", "quack")

animal_type = "cow"
animal_sound = "moo"
printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
print(BEGIN_END, EIEIO)
print("And on that farm he had a", animal, EIEIO)
print("With a", sound, ",", sound, "here")
print("And a", sound, ",", sound, "there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a", sound, ",", sound)
print(BEGIN_END, EIEIO)
print()

main() oldmac.py

1. Define (store) main
2. Define (store) printVerse
3. Call main function
4. Execute main function
5. Call, execute printVerse

…

1

2

3

4

5
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Summary: Program Organization
• Larger programs require functions to maintain 

readability
Ø Use main() and other functions to break up program into 

smaller, more manageable chunks
Ø “Abstract away” the details

• As before, can still write smaller scripts without any 
functions
Ø Can try out functions using smaller scripts

• Need the main() function when using other functions 
to keep “driver” at top
Ø Otherwise, functions need to be defined before use
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VARIABLE LIFETIMES AND SCOPE
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What does this program output?
def main(): 

x = 10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()
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Function Variables
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def main(): 
x = 10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Why can we name two 
different variables x?

mystery.py
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Tracing through Execution
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def main(): 
x = 10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

D
ef
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When you call main(), that means you 
want to execute this function
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def main() : 
x=10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables
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main

Memory stack

x     10

Function names are like last names
Define the SCOPE of the variable 

Variable names
are like first names

21
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def main() : 
x=10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables
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main x     10

sum
Evens

limit 10

Called the function sumEvens
Add its parameters to the stack
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def main() : 
x=10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables
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main x     10

sum
Evens

total 0
limit 10

23
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def main() : 
x=10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables
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main x     10

sum
Evens

x      0
total   0
limit 10
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def main() : 
x=10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables
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main x     10

sum
Evens

x    8
total 20
limit 10

25
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def main() : 
x=10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables
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main sum  20
x     10

Function sumEvens returned
• no longer have to keep track of 

its variables on stack
• lifetime of those variables is over
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def main() : 
x=10
sum = sumEvens( x )
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables
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main sum  20
x     10
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Variable Scope
• Functions can have the same parameter and variable 

names as other functions
Ø Need to look at the variable’s scope to determine which one 

you’re looking at
Ø Use the stack to figure out which variable you’re using

• Scope levels
Ø Local scope (also called function scope)

• Can only be seen within the function
Ø Global scope (also called file scope)

• Whole program can access
• More on these later
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Variable Scope
• Know “lifetime” of variable

Ø Only during execution of function
Ø Related to idea of “scope”

• Consider: how many functions probably use a 
variable like x or i?  What would the impact be on 
our programs if all variables had global scope?
Ø Example: round(x, n)

• In general, our only global variables will be 
constants because we don’t want them to change 
value
Ø e.g., EIEIO
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TESTING FUNCTIONS
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Testing Functions
• Functions make it easier for us to test our code
• We can write code to test the functions

Ø Test Case:
• Input: parameters
• Expected Output: what we expect to be returned

ØOr if state changed as we expected
ØWe can verify the function programmatically

• “programmatically” – automatically execute test cases 
and verify that the actual returned result is what we 
expected

• No user input required!
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test Module
• Not a standard module

Ø Included with our textbook
ØMore sophisticated testing modules but this is 

sufficient for us
• Function:

ØtestEqual(actual, expected)
• Parameters: actual and expected results for a 

function.
• Displays "Pass" and returns True if the test case 

passes.
• Displays error message, with expected and actual 

results, and returns False if test case fails.
Feb 10, 2021 Sprenkle - CSCI111 32

32

Example: Testing sumEvens
import test
…
def testSumEvens():

actual = sumEvens( 10 )
expected = 20 
test.testEqual( actual, expected )

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total
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testSumEvens.py

This is the actual result     
from our function

This is what we expect the result to be

What are other good test cases?
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Summary: Why Write Functions?
• Allows you to break up a problem into smaller, more 
manageable parts

• Makes your code easier to understand
• Hides implementation details (abstraction)

Ø Provides interface (input, output)

• Makes part of the code reusable so that you:
Ø Only have to write function code once
Ø Can debug it all at once

• Isolates errors
Ø Can make changes in one function (maintainability)
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Similar to benefits of OO Programming
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Evolving General Design Patterns
• Former general design pattern:

• Now general design pattern:
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1. Optionally, get user input
2. Do some computation
3. Display results

1. Optionally, get user input
2. Do some computation by calling functions, get results
3. Display results
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Looking Ahead
• BI – Google Search
• Lab 3 due Friday
• Exam next Friday

ØPrep document up soon
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