Objectives

- Escape sequences
- Computer's representations of data types

Mar 5, 2021

Sprenkle - CSCI111

1

Review

- How can we combine strings?
- How can we find out how long a string is?
 - > How do we call it?
- How can you tell if one string is contained within another string?
- How can we find out the character at a certain position?
- How can we iterate through a string? (Two ways)
- How do you call a method on a string?
 - ➤ What is your favorite string method?
- True or False: You can change a string after it's been created

Mar 5, 2021

Sprenkle - CSCI111

2

Review: Iterating Through a String
• For each character in the string

for char in mystring: print(char)

For each position in the string

Determines loop's
behavior

An integer

for pos in range(len(mystring)):
 print(mystring[pos])

Index into the string

Mar 1, 2021 Sprenkle - CSCI111

Review: Testing for Substrings

- Using the in operator
 - > Used **in** before in **for** loops
- Syntax:

substring in string:

- > Evaluates to True or False
- Example:

```
if searchTerm in documentText:
    print(documentText, "contains", searchTerm)
```

Mar 1, 2021

Sprenkle - CSCI111

5

5

Review: Strings are Immutable

You cannot change the value of strings

 For example, you cannot change a character in a string

Mar 1, 2021

Sprenkle - CSCI111

Escape Sequences

- Escape character: \
- Escape sequences
 - ➤ newline character (carriage return) → \n
 - \rightarrow tab \rightarrow \t
 - \geq quote \rightarrow \" or \'
 - ▶ backslash → \\

Interactive demonstration

- Example:
 - > print("To print a \\, you must use \"\\\\"")
 - What does this display?

Mar 5, 2021

Sprenkle - CSCI111

demo_str.py

7

Practice

- Display To print a tab, you must use '\t'.
- Display I said, "How are you?"

escape_sequence.py

Sprenkle - CSCI111

Mar 5, 2021

Q

Representations of Data

- Computer needs ways to represent different types of data
 - > Eventually, all boils down to 1s and 0s
- Computer needs to translate between what humans know to what computer knows and back again

Mar 5, 2021

Seems like a divergence on strings but just wait...

9

q

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each position in a decimal number represents a power of 10

Mar 5, 2021 Sprenkle - CSCI111

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each position in a decimal number represents a power of 10
- Example: 54,087

5	4	0	8	7
104	10 ³	10 ²	10¹	10 ⁰

- \bullet = 5*10⁴ + 4*10³ + 0*10² + 8*10¹ + 7*10⁰
- \bullet = 5*10,000 + 4*1000 + 0*100 + 8*10 + 7*1

Mar 5, 2021

Sprenkle - CSCI111

11

11

Number Representations

Characteristic	Decimal	Binary	
Base	10	2	
Digits	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	0, 1	
Position represents	Power of 10	Power of 2	

- Binary: two values (0, 1)
 - Like a light switch (either **off** or **on**) or booleans (either True or False)
- 0 and 1 are binary digits or bits
 - ▶ 64-bit machine: represents numbers (and other data) with 64 bits

Mar 5, 2021

Sprenkle - CSCI111

Binary Representation

Binary number: 1101

1	1	0	1
2 ³	2 ²	2 ¹	2 ⁰

$$= 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0$$

$$= 1*8 + 1*4 + 0*2 + 1*1$$

> Decimal value: 13

Practice: what is the decimal value of the binary number **IOIIO**?

Mar 5, 2021

Sprenkle - CSCI111

13

13

Binary Representation

• Binary number: 10110

1	0	1	1	0
24	2 ³	2 ²	2 ¹	2 ⁰

$$\bullet$$
 = 1*2⁴ + 0*2³ + 1*2² + 1*2¹ + 0*2⁰

$$\bullet$$
 = 1*16 + 0*8 + 1*4 + 1*2 + 0*1

≥ 22

Generalize this process into an algorithm. Implement as function: binaryToDecimal(binaryNum)

Mar 5 2021

Sprenkle - CSCI111

Algorithm 1: Converting Binary → Decimal (left to right traversal of binary number)

Accumulator design pattern

Given the binary number as a string

- 1. Initialize the result to zero
- 2. The starting exponent will be the length of the string-1
- 3. For each bit in the binary number
 - Multiply the bit by the appropriate power of 2
 - > Add this to the result
 - Reduce the exponent by 1
- 4. Return the result

Good test cases?

Mar 5, 2021

Sprenkle - CSCI111

15

15

Algorithm 2: Converting Binary → Decimal (right to left traversal of binary number)

Accumulator design pattern

Given the binary number as a string

- 1. Initialize the result to zero
- 2. Initialize the exponent to zero
- 3. Iterate over the positions of the binary number from right to left
 - > Determine the bit at that position in the binary number
 - Multiply the bit by the appropriate power of 2
 - > Add this to the result
 - Increase the exponent by 1

Good test cases?

4. Return the result

Mar 5, 2021

Sprenkle - CSCI111

Practice

- Implement both algorithms
 - > Test!
- After implementing, you can compare with my solutions
 - binaryToDecimalIterateOverCharacters.py
 - binaryToDecimalIterateOverExponents.py

Mar 5, 2021 Sprenkle - CSCI111

Algorithm: Converting Decimal → Binary

Given the decimal as an integer...

- 1. Initialize the result to the empty string
- 2. Repeat until the decimal is 0:
 - > result = str(decimal % 2) + result
 - decimal = decimal // 2
- 3. Return the result
 - 1. Try out algorithm with 22 as input
 - 2. Implement algorithm in function decimalToBinary
 - 3. Good test cases?

Mar 5, 2021

Sprenkle - CSCI111

decimalToBinary.py

17

Looking Ahead

- Pre Lab 7
 - ➤ Back to indefinite loops
 - ➤ More strings
 - Repeating section about string formatting (more on Monday)

Mar 5, 2021

Sprenkle - CSCI111

19