
1

Objectives
• Search comparison
• Two-dimensional lists

Apr 5, 2021 Sprenkle - CSCI111 1

1

Review
• What are the two types of search we discussed?

ØHow do they work?
ØHow do they compare?
ØWhat are the tradeoffs between using linear search

and binary search?

Apr 5, 2021 Sprenkle - CSCI111 2

2

2

Review: Search Using in Review
• Iterates through a list, checking if the element is

found
• Known as linear search
• Implementation:

Apr 5, 2021 Sprenkle - CSCI111 3

def linearSearch(searchlist, key):
for elem in searchlist:

if elem == key:
return True

return False

8 5 3 7

0 1 2 3

value

pos

3

Alternative: Like index method
• Iterates through positions in a list, checking if the

element is found
• Still known as linear search
• Implementation:

Apr 5, 2021 Sprenkle - CSCI111 4

def linearSearch(searchlist, key):
for pos in len(range(searchlist)):

if searchlist[pos] == key:
return pos

return -1

4

3

Review: Linear Search
• Overview: Iterates through a list, checking if the

element is found

• Benefits:
ØWorks on any list

• Drawbacks:
Ø Slow, on average: needs to check each element of

list if the element is not in the list

Apr 5, 2021 Sprenkle - CSCI111 5

5

Review: Binary Search: Eliminate Half the
Possibilities
• Repeat until find value (or looked through all

values)
ØGuess middle value of possibilities

• (not middle position)
Ø If match, found!
ØOtherwise, find out too high or too low
ØModify your possibilities

• Eliminate the possibilities from your number and
higher/lower, as appropriate

• Known as Binary Search
Apr 5, 2021 Sprenkle - CSCI111 6

6

4

Binary Search Implementation

Apr 5, 2021 Sprenkle - CSCI111 7

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid # return True
elif key > searchlist[mid]:

low = mid+1
else:

high = mid-1
return -1 # return False

If you just want to
know if it’s in the list

7

Binary Search
• Example of a Divide and Conquer algorithm

ØBreak into smaller pieces that you can solve
• Benefits:

Ø Faster to find elements (especially with larger lists)
• Drawbacks:

Ø List must be sorted before searching
• Takes time to sort

ØRequires that data can be compared
•__lt__, __eq__ methods implemented by the

class (or another solution)
Apr 5, 2021 Sprenkle - CSCI111 8

More on this tomorrow

8

5

Key Questions in Computer Science
• How can we efficiently organize data?
• How can we efficiently search for data, given

various constraints?
Ø Example: data may or may not be sortable

• What are the tradeoffs?

Apr 5, 2021 Sprenkle - CSCI111 9

9

Empirical Study of Search Techniques

• How long does it take to find various keys?
ØMeasure by the number of comparisons
ØVary the size of the list and the keys
ØWhat are good tests for the lists and the keys?

Apr 5, 2021 Sprenkle - CSCI111 10

search_compare.py

Goal: Determine which technique is
better under various circumstances

10

6

Empirical Study of Search Techniques
• Analyzing Results …

ØBy how much did the number of comparisons for
linear search vary?

ØBy how much did the number of comparisons for
binary search vary?

• What conclusions can you draw from these
results?

Apr 5, 2021 Sprenkle - CSCI111 11

search_compare.py

11

Search Strategies Summary
• Which search strategy should I use under the

following circumstances?
Ø I have a short list

Ø I have a long list

Ø I have a long sorted list

Apr 5, 2021 Sprenkle - CSCI111 12

12

7

Search Strategies Summary
• Which search strategy should I use under the

following circumstances?
Ø I have a short list

• How short? How many searches? Linear (in)
Ø I have a long list

• Linear (in) - because don’t know if in order,
comparable

• Alternatively, may want to sort the list and then
perform binary search, if sorting first won’t be more
effort than just sorting.

Ø I have a long sorted list
• Binary

Mar 29, 2019 Sprenkle - CSCI111 13

13

2D LISTS

Apr 5, 2021 Sprenkle - CSCI111 14

14

8

Lists
• We’ve used lists that contain

Ø Integers
Ø Strings
ØCards (Deck class)
ØPersons (your Person class)

• We discussed that lists can contain multiple
types of objects within the same list
ØWheel of Fortune: [“Bankrupt”, 250, 350, …]

• Lists can contain any type of object
Ø Even LISTS!

Apr 5, 2021 Sprenkle - CSCI111 15

15

Review of Regular (1D) Lists

Apr 5, 2021 Sprenkle - CSCI111 16

onedlist = [7, -1, 23]

Elements in the list
• How do we find the number of

elements in the list?
• How can we find the value of the third

element in the list?

16

9

Review of Regular (1D) Lists

•len(onedlist) is 3
•onedlist[2] is 23

Apr 5, 2021 Sprenkle - CSCI111 17

onedlist = [7, -1, 23]

Elements in the list

17

list
twod[2]

list
twod[1]

A List of Lists: 2-Dimensional List

Apr 5, 2021 Sprenkle - CSCI111 18

twod

twod = [[1,2,3,4], [5,6], [7,8,9,10,11]]

list
twod[0]

twod[0] twod[1] twod[2]

1st dimension

18

10

A List of Lists: 2-Dimensional list

• “Rows” within 2-dimensional list do not need to be the
same length

• However, it’s often easier if they’re the same length!
Ø We’ll focus on “rectangular” 2D lists

Apr 5, 2021 Sprenkle - CSCI111 19

twod = [[1,2,3,4], [5,6], [7,8,9,10,11]]

list
twod[2]

list
twod[1]

list
twod[0]

twod

19

Handling Rectangular Lists

• What does each component of twod[1][2] mean?
• How can we programmatically determine the number of

rows in twod? The number of columns in a given row?

Apr 5, 2021 Sprenkle - CSCI111 20

list

list

list

twod[0]

twod[1]

twod[2]
twod[2][3]

twod[0][0]

twod[1][2] = 42twod

20

11

Handling Rectangular Lists

• How can we programmatically determine the number of
rows in twod?
Ø rows = len(twod)

• The number of columns in a given row?
Ø cols = len(twod[whichRow])

Apr 5, 2021 Sprenkle - CSCI111 21

list

list

list

twod[0]

twod[1]

twod[2]

42

twod[1][2] = 42

twod[2][3]

twod[0][0]

Row pos
Col pos

2-d list var

Assignment

twod

21

def mystery(twod):
""" ‘run’ this on twod, at right """
for row in range(len(twod)):

for col in range(len(twod[row])):
if row == col:

twod[row][col] = 42
else:

twod[row][col] += 1

2D List Practice
Starting with the 2D list twod shown

here, what are the values in twod
after running this code?

Apr 5, 2021 Sprenkle - CSCI111 22

1 2 3 4
5 6 7 8
9 10 11 12

twod Before

twod After

row 0

row 1

row 2

col 0 col 1 col 2 col 3

mystery.py
22

12

def mystery(twod):
""" ‘run’ this on twod, at right """
for row in range(len(twod)):

for col in range(len(twod[row])):
if row == col:

twod[row][col] = 42
else:

twod[row][col] += 1

2D List Practice
Starting with the 2D list twod shown

here, what are the values in twod
after running this code?

Apr 5, 2021 Sprenkle - CSCI111 23

1 2 3 4
5 6 7 8
9 10 11 12

twod Before

mystery.py

col 0 col 1 col 2 col 3

row 0

row 1

row 2

twod After

42 3 4 5

6 42 8 9

10 11 42 13

23

Creating a 2D List
twod = []

• Create a row of the list, e.g.,
row = [1, 2, 3, 4] or row = list(range(1,5))
or row = [0] * 4 or …

• Then append that row to the list
twod.append(row)
print(twod)

• [[1, 2, 3, 4]]

• Repeat
row = list(range(1,5))
twod.append(row)
print(twod)

• [[1, 2, 3, 4], [1, 2, 3, 4]]
Apr 5, 2021 Sprenkle - CSCI111 24

24

13

Generalize Creating a 2D List
• Create a function that returns a 2D list with

width cols and height rows
Ø Initialize each element in (sub) list to 0

Apr 5, 2021 Sprenkle - CSCI111 25

25

Generalize Creating a 2D List
• Create a function that returns a 2D list with

width cols and height rows
Ø Initialize each element in (sub) list to 0

Apr 5, 2021 Sprenkle - CSCI111 26

def create2DList(rows, cols):
twodlist = []
for each row
for rowPos in range(rows):

row = []
for each column, in each row
for colPos in range(cols):

row.append(0)
twodlist.append(row)

return twodlist

26

14

Generalize Creating a 2D List
• Create a function that returns a 2D list with

width cols and height rows
Ø Initialize each element in (sub) list to 0

Apr 5, 2021 Sprenkle - CSCI111 27

def create2DList(rows, cols):
twodlist = []
for each row
for rowPos in range(rows):

row = []
for each column, in each row
for colPos in range(cols):

row.append(0)
twodlist.append(row)

return twodlist

Flexibility in what
you put into the list

27

Example: Creating 2D List – 3 rows, 4 cols

Apr 5, 2021 Sprenkle - CSCI111 28

list

twodlist

row = []

list

28

15

Example: Creating 2D List – 3 rows, 4 cols

Apr 5, 2021 Sprenkle - CSCI111 29

0 0 0 0

row For every column, append 0

twodlist

list list

29

Example: Creating 2D List – 3 rows, 4 cols

Apr 5, 2021 Sprenkle - CSCI111 30

list
0 0 0 0

row For every column, append 0

Append row to twodlist

twodlist

list

twodlist[0]

30

16

Example: Creating 2D List – 3 rows, 4 cols

Apr 5, 2021 Sprenkle - CSCI111 31

list
0 0 0 0

row = []

twodlist

list

list

twodlist[0]

31

Example: Creating 2D List – 3 rows, 4 cols

Apr 5, 2021 Sprenkle - CSCI111 32

list list

twodlist[0]

0 0 0 0

row
0 0 0 0

For every column, append 0

twodlist

list

32

17

Example: Creating 2D List – 3 rows, 4 cols

Apr 5, 2021 Sprenkle - CSCI111 33

list list
0 0 0 0

0 0 0 0

twodlist

twodlist[0]

twodlist[1]

list

Append row to twodlist

row

33

Example: Creating 2D List – 3 rows, 4 cols

Apr 5, 2021 Sprenkle - CSCI111 34

list

twodlist

list

list

list

twodlist[0]

twodlist[1]

twodlist[2]

0 0 0 0

0 0 0 0

0 0 0 0

34

18

Generalize Creating a 2D List
• Create a function that returns a 2D list with

width cols and height rows
Ø Initialize each element in (sub) list to 0

Apr 5, 2021 Sprenkle - CSCI111 35

def create2DList(rows, cols):
twodlist = []
for each row
for rowPos in range(rows):

row = []
for each column, in each row
for colPos in range(cols):

row.append(0)
twodlist.append(row)

return twodlist

Flexibility in what
you put into the list

35

Graphical Representation of 2D Lists
• Module: csplot
• Allows you to visualize your 2D list

ØNumbers are represented by different colors

Apr 5, 2021 Sprenkle - CSCI111 36

import csplot
…
create 2D list…
twodlist=[[0,0,0], [1,1,1], [2,2,2]]
display list graphically
csplot.show(twodlist)

36

19

Graphical Representation of 2D Lists
• Can assign colors to numbers

Apr 5, 2021 Sprenkle - CSCI111 37

import csplot
…
create 2D list…
twodlist=[[0,0,0], [1,1,1], [2,2,2]]
create optional dictionary of numbers to their color rep
numToColor={0:"purple", 1:"blue", 2:"green"}
csplot.show(twodlist, numToColor)

37

Graphical Representation of 2D Lists

Apr 5, 2021 Sprenkle - CSCI111 38

matrix = [[0,0,0], [1,1,1], [0,1,2]]

What values map
to which colors

by default?

38

20

Graphical Representation of 2D Lists
• Note that representation of rows is backwards

from how we’ve been visualizing

Apr 5, 2021 Sprenkle - CSCI111 39

matrix = [[0,0,0], [1,1,1], [0,1,2]]

Row 0

Row 1

Row 2
What values map
to which colors

by default?

39

Game Board for Connect Four
• 6 rows, 7 columns board
• Players alternate dropping red/black checker

into slot/column
• Player wins when have four checkers in a row

vertically, horizontally, or diagonally

Apr 5, 2021 Sprenkle - CSCI111 40

How do we represent the board as a 2D list,
using a graphical representation?

40

21

Representing Connect Four Game Board
• Using a 2D list

Apr 5, 2021 Sprenkle - CSCI111 41

Number Meaning Color

0 Free Yellow

1 Player 1 Red

2 Player 2 Black

41

Representing Connect Four Game Board
• Using a 2D list

Apr 5, 2021 Sprenkle - CSCI111 42

Number Meaning Color

0 Free Yellow

1 Player 1 Red
2 Player 2 Black

Row 0

Row 5

42

22

ConnectFour Class
• What is the data associated with the class?
• What methods should we implement?

Apr 5, 2021 Sprenkle - CSCI111 43

43

ConnectFour Class
• Data

Ø Board
• 6 rows, 7 columns, all FREE to start

• Methods
Ø Constructor
Ø Display the board
Ø Play the game
Ø Get input/move from user
Ø Check if valid move
Ø Make move
Ø Check if win

Apr 5, 2021 Sprenkle - CSCI111 44

+ constants

44

23

ConnectFour Constants

Apr 5, 2021 Sprenkle - CSCI111 45

class ConnectFour:
""" Class representing the game Connect Four. """

Represent different values on the board
FREE = 0
PLAYER1 = 1
PLAYER2 = 2

Represent the dimensions of the board
ROWS = 6
COLS = 7

To reference constants, use ConnectFour.CONSTANT

45

ConnectFour Class
• Play the game method implementation

Ø Repeat:
• Get input/move from user
• Check if valid move
• Make move
• Display board
• Check if win
• Change player

Apr 5, 2021 Sprenkle - CSCI111 46

def play(self):
won = False
player = ConnectFour.PLAYER1

while not won:
print("Player {:d}'s move".format(player))
if player == ConnectFour.PLAYER1:

col = self._userMakeMove()
else: # computer is player 2

pause because otherwise move happens too
quickly and looks like an error
sleep(.75)
col = self._computerMakeMove()

row = self.makeMove(player, col)
self.showBoard()
won = self._isWon(row, col)

alternate players
player = player % 2 + 1

46

24

Connect Four (C4): Making moves
• User clicks on a column

Ø “Checker” is filled in at that column

Apr 5, 2021 Sprenkle - CSCI111 47

gets the column where user clicked
col = csplot.sqinput()

def _userMakeMove(self):
"""Allow the user to pick a column."""
col = csplot.sqinput()
validMove = self._isValidMove(col)
while not validMove:

print("NOT A VALID MOVE.")
print("PLEASE SELECT AGAIN.")
print()
col = csplot.sqinput()
validMove = self._isValidMove(col)

return col

47

Problem: C4 - Valid move?
• Need to enforce valid moves

Ø In physical game, run out of spaces for checkers if
not a valid move

• How can we determine if a move is valid?
ØHow do we know when a move is not valid?

Apr 5, 2021 Sprenkle - CSCI111 48

48

25

Problem: C4 - Valid move?
• Solution: check the “top” spot

Ø If the spot is FREE, then it’s a valid move

Apr 5, 2021 Sprenkle - CSCI111 49

49

Problem: C4 - Making a Move
• The player clicks on a column, meaning that’s

where the player wants to put a checker
• How do we update the board?

Apr 5, 2021 Sprenkle - CSCI111 50

50

26

Looking Ahead
• Lab 11 – Tomorrow

ØPre lab: review nested lists, classes
ØReview implementation of binary search

• Broader Issue: Facebook – Friday

Apr 5, 2021 Sprenkle - CSCI111 51

51

Exam 2 Results
A B C Total

Average 87.29 78.41 84.21 89.16
Median 89.20 77.27 89.47 93.75

Apr 5, 2021 Sprenkle - CSCI111 52

• Common issues
Ø Identifying data types (int, str, dictionary, list)
Ø Tracing functions, describing what they do

• Formal, actual parameters
ØWhat code outputs
ØComplicating code to solve problem

• Ex: can use in to check if a key is in a dictionary

52

