
1

Objectives
• Review
• Lab 2

ØProgramming practice

Feb 2, 2021 Sprenkle - CSCI111 1

1

Feedback on Lab 1
• Overall good
• Notes

Ø Saved output from each program
• With user input, try several different good test cases

ØWant good output
• think about what the user wants to see

ØHigh-level comments
• Describes what the program does

ØHelps for quick overview when reviewing
Ø Electronic submission

• In directory – looked good!

Feb 2, 2021 Sprenkle - CSCI111 2

2

2

Review
• What program do we use to develop programs?

ØWhat is the command you execute to start it?

• What is our process for developing programs?

• How can we make our program interactive with
a user?

Feb 2, 2021 Sprenkle - CSCI111 3

You can install Python/IDLE on your own computers
to practice between labs.

3

IDLE Review
• Run using idle3 &

Feb 2, 2021 Sprenkle - CSCI111 4

4

3

Review: Development Process
1. Create a sketch of how to solve the problem (the

algorithm)
2. Fill in the details in Python
3. Test code using good, varied test cases to try to find

errors in code
4. If program’s output does not match the expected

output, debug to find the problem and fix it
Ø Repeat testing and debugging until no more faults

5. Make code “better”, test again
Ø Fix variable names, better comments

Jan 25, 2021 Sprenkle - CSCI111 5

5

Testing

Feb 2, 2021 Sprenkle - CSCI111 6

Honey Badger gets bad grade in CSCI111

6

4

Lessons from Lab
• Look at examples!

Ø “We were able to do this in that other program. How did
we do that?”

Ø On the course schedule page
• Explore!

Ø Try things out in interactive mode
Ø Then, put the ones that work into a script/program

• Testing!
Ø Start with smaller and easy-to-verify tests
Ø Test a variety of inputs

• Follow all of the directions!

Feb 2, 2021 Sprenkle - CSCI111 7

time

understanding

7

Recommendation
• Get user input last – this is a fairly routine step
• Develop/test without getting input first

Ø Speeds up process
• Then, add user input

Feb 2, 2021 Sprenkle - CSCI111 8

8

5

Review: Linux Commands
• What is the command to…

ØDetermine which directory you’re in?
ØView the contents of a directory?
ØCreate a directory?
ØCopy a file?
ØDelete a file?

• How do you refer to … your home directory?
The current directory? The parent directory?

Feb 2, 2021 Sprenkle - CSCI111 9

9

Linux Command: mv
• Used to move or rename a file
•mv <sourcefile> <destination>
• Example usage:

Ø Renames file.py to newfilename.py

Ø Moves ~/cs111/file.py to current directory with a
new name

Ø If <destination> is a directory, keeps the original
source file’s name

Ø File file.py will now be in cs111/lab1 directory
Jan 26, 2021 Sprenkle - CSCI111 10

mv ~/cs111/file.py ~/cs111/lab1/ directory

mv file.py newfile.py

mv ~/cs111/file.py newfilename.py

10

6

Linux Command: rm
• Used to delete or remove a file
•rm <filename>
• Example usage:

ØDeletes file.py in the current directory

ØDeletes ~/cs111/lab1/file.py

Feb 2, 2021 Sprenkle - CSCI111 11

rm file.py

rm ~/cs111/lab1/file.py

11

Review
• What are the two types of division?
• How can we find the remainder of a division?

Feb 2, 2021 Sprenkle - CSCI111 12

12

7

Review: Arithmetic Operations

Feb 2, 2021 Sprenkle - CSCI111 13

Symbol Meaning Associativity

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

% Remainder (“mod”) Left

** Exponentiation (power) Right

Precedence rules: P E - DM% AS

negation

Associativity matters when
you have the same

operation multiple times

13

Review: Two Division Operators

/ Float Division
• Result is a float
• Examples:

Ø 6/3 à 2.0
Ø 10/3 à

3.3333333333333335
Ø 3.0/6.0 à 0.5
Ø 10/9 à 1.9

// Integer Division
• Result is an int
• Examples:

Ø 6//3 à 2
Ø 10//3 à 3
Ø 3.0//6.0 à 0
Ø 10//9 à 1

Feb 2, 2021 Sprenkle - CSCI111 14

14

8

Review: Object-Oriented Programming

• What is the term for how we create a new
object?
ØWhat is the syntax for that?

• What is the term for how we give commands
to/do operations on objects?
ØWhat is the syntax for that?

• What are two types of methods we talked
about?
ØHow do they work differently?

Feb 2, 2021 Sprenkle - CSCI111 15

15

Review
• How do we get access to the code in
graphics.py in our code?

• What is our typical process for drawing an
object?
ØPattern recognition: We’ve done this several times

now – what is the pattern?
• How can we make a duplicate of a drawable

object using the Graphics API?
• How can we find out what we can do to an

object?
Feb 2, 2021 Sprenkle - CSCI111 16

16

9

Review: What is Our Graphics Programming
Design Pattern?
• Import the Graphics Library
• Create the GraphWin
• Construct the Object

ØConstruct the objects it needs
Ø Set up its color, width, …

• Draw the object
• Also, at the end of program

ØCall getMouse to make the window stay open until
the user clicks

Ø Then, call close on the window

Feb 1, 2021 Sprenkle - CSCI111 17

17

Moving a Circle According to the User
• Draw a circle in the upper left-hand corner of the

screen
• Tell the user to click somewhere
• Move the circle to where the user clicked

Feb 2, 2021 Sprenkle - CSCI111 18

Consult your Graphics API
How can we do these last two objectives?

18

10

Moving a Circle According to the User
• Draw a circle in the upper left-hand corner of the

screen
• Tell the user to click somewhere

Ø If you print, user won’t necessarily see what you
display

ØUse the Text object
• Move the circle to where the user clicked

Ø <GraphWinObj>.getMouse()
• Returns the user’s mouse click as a Point object

Ø Save point as a variable, e.g.,
• destinationPoint = myWindow.getMouse()

Feb 2, 2021 Sprenkle - CSCI111 19

19

Getting Input from the User
•<GraphWinObj>.getMouse()

ØReturns the user’s mouse click as a Point object
• Entry objects

ØGet text from user

Feb 1, 2021 Sprenkle - CSCI111 20

20

11

Designing for Change
• Sometimes there are “magic numbers” in our code

Ø Example: 200 in tic-tac-toe

• Humans have more trouble understanding numbers
than understanding words

• Give our magic numbers meaning by assigning them
to variables, called constants
Ø Example: PI = 3.14159…
Ø Name them with all capital letters (and maybe

underscores) and put them at the top of programs
Ø Makes them easier to find and change; software is soft

Feb 1, 2021 Sprenkle - CSCI111 21

21

Example: Width, Height for Tic-Tac-Toe
• Create a constant variable that represents the

width and height of the GraphWin for Tic-Tac-
Toe

• Consider: How easy to change if want a different
window size?

Feb 1, 2021 Sprenkle - CSCI111 22

22

12

Example: Width, Height for Tic-Tac-Toe
• Create a constant variable that represents the

width and height of the GraphWin for Tic-Tac-
Toe

• Consider: How easy to change if want a different
window size?
Ø Easy!

• Follow a similar process with other data types
(strings, colors, …)

Feb 1, 2021 Sprenkle - CSCI111 23

23

Lab Overview
• Arithmetic problems
• Graphics API Problems

ØUpdate web page

Feb 2, 2021 Sprenkle - CSCI111 24

24

