
1

Lab 4

• Review Lab 3
ØRun Animations!

• Function review

Feb 16, 2021 Sprenkle - CSCI111 1

1

Lab 3

• Iterative Fibonacci Sequence was a question on
several students’ interviews

Feb 16, 2021 Sprenkle - CSCI111 2

2

2

Feb 16, 2021 Sprenkle - CSCI111

Lab 3 Feedback

• Continuing to get tougher in grading
ØPaying more attention to style (e.g., variable names),

efficiency, readability, good output
ØHigh-level descriptions
ØMore strict on adhering to problem specification
ØConstants
ØDemonstrate program more than once if gets input

from user or outcome changes when run again
• Find errors before I do!

3

3

Program Organization

Feb 16, 2021 Sprenkle - CSCI111 4

high-level description
author name

import statements

CONSTANT_DEFNS = …

program_statements ...
program_statements ...
program_statements …

4

3

Program Organization

Feb 16, 2021 Sprenkle - CSCI111 5

high-level description
author name

import statements

CONSTANT_DEFNS = …

def main():
statements…
statements...

def otherfunction():
statement...

5

Lab 3 Feedback: Common Issues

Feb 16, 2021 Sprenkle - CSCI111 6

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 15):
operand1=12
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is more efficient (does less “work”)?

6

4

Lab 3 Feedback: Common Issues

Feb 16, 2021 Sprenkle - CSCI111 7

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 15):
operand1=12
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

çAdditional assignment each time through loop

Which solution is more efficient (does less “work”)?

7

Lab 3 Feedback: Common Issues

Feb 16, 2021 Sprenkle - CSCI111 8

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

operand1=12
operand2=0
for x in range(14):

operand2 = x + 1
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

8

5

Lab 3 Feedback: Common Issues

Feb 16, 2021 Sprenkle - CSCI111 9

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

operand1=12
operand2=0
for x in range(14):

operand2 = x + 1
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

More code makes
solution more difficult

to understand

9

Animation Feedback

• If moving multiple objects together
ØMove all the objects, then sleep
ØOtherwise, animation looks choppy

• Could use a list with the for loop, as discussed in
several sections in the textbook
Ø Simplifies and reduces code

Feb 16, 2021 Sprenkle - CSCI111 10

for object in [myObj1, myObj2, myObj3]:
object.move()

sleep(.001)

10

6

Run Animations

Feb 16, 2021 Sprenkle - CSCI111 11

11

Review

• What are characteristics of a good function?
• How can we programmatically test functions?
• What are two development processes we have

discussed?

Feb 16, 2021 Sprenkle - CSCI111 12

12

7

Feb 16, 2021 Sprenkle - CSCI111 13

Writing a “Good” Function

• Should be an “intuitive chunk”
ØDoesn’t do too much or too little
ØIf does too much, try to break into more

functions
• Should be reusable
• Should have an “action” name
• Should have a comment that tells what the

function does

13

Writing Comments for Functions

• Good style: Each function must have a comment
ØDescribes functionality at a high-level
Ø Include the precondition, postcondition
ØDescribe the parameters (their types) and the result

of calling the function (precondition and
postcondition may cover this)

Feb 16, 2021 Sprenkle - CSCI111 14

14

8

Writing Comments for Functions

• Include the function’s pre- and post- conditions
• Precondition: Things that must be true for

function to work correctly
Ø E.g., num must be even

• Postcondition: Things that will be true when
function finishes (if precondition is true)
Ø E.g., the returned value is the max

Feb 16, 2021 Sprenkle - CSCI111 15

15

Refactoring:
Converting Functionality into Functions
1. Identify functionality that should be put into a function

Ø What should the function do?
Ø What is the function’s input?
Ø What is the function’s output (i.e., what is returned)?

2. Define the function
Ø Write comments

3. Test the function programmatically
4. Call the function where appropriate
5. Create a main function that contains the “driver” for

your program
Ø Put at top of program

6. Call main at bottom of program

Feb 16, 2021 Sprenkle - CSCI111 16

16

9

Review: Bottom-Up Development

• Use the function in context/
call the function

• Define a function
ØDocument
Ø Test the function

Feb 16, 2021 Sprenkle - CSCI111 17

Function

Function

1

2

17

test module’s testEqual function

• Example from yesterday

Feb 16, 2021 Sprenkle - CSCI111 18

def testWinPercentage():
test.testEqual(calculateWinPercentage(0, 1), 0)
test.testEqual(calculateWinPercentage(2, 2), .5)
test.testEqual(calculateWinPercentage(3, 7), .3)
test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()

After confirming that the function works…

Could add a parameter for the
number of decimal places of precision

18

10

test module’s testEqual function

• Example from yesterday

Feb 16, 2021 Sprenkle - CSCI111 19

def testWinPercentage():
test.testEqual(calculateWinPercentage(0, 1), 0)
test.testEqual(calculateWinPercentage(2, 2), .5)
test.testEqual(calculateWinPercentage(3, 7), .3)
test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()
main()

Comment out call to test function.
Call main.

19

Docstring on Function

Feb 16, 2021 Sprenkle - CSCI111 20

def calculateWinPercentage(wins, losses):
"""
Calculates and returns a win percentage, based on the given wins
and losses.
Parameters:
- wins: a non-negative integer representing the number of wins
- losses: a non-negative integer representing the number of losses
Pre: either wins or losses must be greater than 1 or will throw a
divide by zero error
Post: returns the win percentage (between 0 and 1, inclusive)
"""
…

Good docstring because
Ø Describes parameters
Ø Describes what is return (is it a %?)
Ø Describes error cases

20

11

TOP-DOWN DEVELOPMENT
Development approach:

Feb 16, 2021 Sprenkle - CSCI111 21

21

Top-Down Development

• I have a problem
• But, that problem can be broken into smaller

problems

• Solution:
ØProblems à functions!
ØDivide and Conquer!

Feb 16, 2021 Sprenkle - CSCI111 22

22

12

Example: Top-Down Development

• I want to calculate and then display a team’s
win/loss percentage based on user input

Feb 16, 2021 Sprenkle - CSCI111 23

23

Example: Top-Down Development

• I want to calculate and then display a team’s
win/loss percentage based on user input
• Algorithm:

ØGet user input for number of wins and losses

ØCalculate the win percentage

ØDisplay the results

Feb 16, 2021 Sprenkle - CSCI111 24

24

13

Example: Top-Down Development –
Design: Identify Functions
• I want to calculate and then display a team’s

win/loss percentage based on user input
• Algorithm:

ØGet user input for number of wins and losses

ØCalculate the win percentage

ØDisplay the results

Feb 16, 2021 Sprenkle - CSCI111 25

main

calculateWinPercentage

Think about how the function
will be used firstà API!

25

Example: Top-Down Development –
Starting Implementation…

Feb 16, 2021 Sprenkle - CSCI111 26

def main():
get user input

winPct = calculateWinPercentage(wins, losses)

display results

def calculateWinPercentage(numWins, numLosses):
"""
Given the number of wins and losses,
calculates and returns the win percentage
…
"""
…

main()

Think about how the function
will be used firstà API!

26

14

Summary: Development Approaches

• There are several development approaches
• Not mutually exclusive
• Often will switch between them, depending on

circumstances

• As programs grow in size, there is no “one way”
to write code
ØBut there may be better ways to make progress
Ø If you’re stuck, step back and reassess your approach

Feb 16, 2021 Sprenkle - CSCI111 27

27

Lab 4 Overview

• Calling functions defined in the same program
• Refactoring code
• Modifying function definitions
• Testing functions
• Creating a module
• Writing a program with a function from scratch

Feb 16, 2021 Sprenkle - CSCI111 28

Note change in naming scheme:
lab4_1.py

28

