Lab 4

Review Lab 3

Run Animations!

Function review

Feb 16, 2021 Sprenkle - CSCI111

Lab 3

Iterative Fibonacci Sequence was a question on
several students’ interviews

Feb 16, 2021 Sprenkle - CSCI111

Lab 3 Feedback

Continuing to get tougher in grading

Paying more attention to style (e.g., variable names),
efficiency, readability, good output

High-level descriptions
More strict on adhering to problem specification
Constants

Demonstrate program more than once if gets input
from user or outcome changes when run again

Find errors before | do!

Feb 16, 2021 Sprenkle - CSCI111 3

Program Organization

high-level description
author name

import statements
CONSTANT_DEFNS = ..
program_statements ...

program_statements ...
program_statements ..

Feb 16, 2021 Sprenkle - CSCI111 4

Program Organization

high-level description
author name

import statements

CONSTANT_DEFNS = ..

def main():
statements..

statements...

def otherfunction():
statement...

Feb 16, 2021 Sprenkle - CSCI111 5

Lab 3 Feedback: Common Issues

Which solution is more efficient (does less “work”)?

operandl=12

for operand2 in range(l, 15):
result = operandl % operand?2
print(operandl, "%", operand2, "=", result)

VS

for operand2 in range(l, 15):
operandl=12
result = operandl % operand?2
print(operandl, "%", operand2, "=", result)

Feb 16, 2021 Sprenkle - CSCI111 6

Lab 3 Feedback: Common Issues

Which solution is more efficient (does less “work”)?

operandl=12
for operand2 in range(l, 15): -
result = operandl % operand2
no/n

print(operandl, "%", operand2, "=", result)

VS

for operand2 in range(1, 15):
operandl=12€Additional assignment each time through loop
result = operandl % operand2

nmo/n nw_n

print(operandl, "%", operand2, "=", result)

Feb 16, 2021 Sprenkle - CSCI111 7

Lab 3 Feedback: Common Issues

Which solution is simpler?

operandl=12

for operand2 in range(l, 15):
result = operandl % operand2
print(operandl, "%", operand2, "=", result)

VS

operandl=12

operand2=0

for x in range(14):
operand2 = x + 1
result = operandl % operand?2
print(operandl, "%", operand2, "=", result)

Feb 16, 2021 Sprenkle - CSCI111 8

Lab 3 Feedback: Common Issues

Which solution is simpler?

operandl=12
for operand2 in range(l, 15): -
result = operandl % operand2

print(operandl, "%", operand2, "=", result)
Vs
operandl=12 More code makes
operand2=0 solution more difficult
for x in range(14): to understand

operand2 = x + 1
result = operandl % operand2
print(operandl, "%", operand2, "=", result)

Feb 16, 2021 Sprenkle - CSCI111 9

Animation Feedback

If moving multiple objects together
Move all the objects, then sleep
Otherwise, animation looks choppy
Could use a list with the for loop, as discussed in
several sections in the textbook
Simplifies and reduces code
for object in [myObjl, myObj2, myObj3]:

object.move()
sleep(.001)

Feb 16, 2021 Sprenkle - CSCI111 10

10

Run Animations

Feb 16, 2021 Sprenkle - CSCI111 11

11

Review

What are characteristics of a good function?
How can we programmatically test functions?

What are two development processes we have
discussed?

Feb 16, 2021 Sprenkle - CSCI111 12

12

Writing a “Good” Function

Should be an “intuitive chunk”
Doesn’t do too much or too little

If does too much, try to break into more
functions

Should be reusable
Should have an “action” name

Should have a comment that tells what the
function does

Feb 16, 2021 Sprenkle - CSCI111 13

13

Writing Comments for Functions

Good style: Each function must have a comment
Describes functionality at a high-level
Include the precondition, postcondition

Describe the parameters (their types) and the result
of calling the function (precondition and
postcondition may cover this)

Feb 16, 2021 Sprenkle - CSCI111 14

14

Writing Comments for Functions

Include the function’s pre- and post- conditions
Precondition: Things that must be true for
function to work correctly

E.g., num must be even
Postcondition: Things that will be true when
function finishes (if precondition is true)

E.g., the returned value is the max

Feb 16, 2021 Sprenkle - CSCI111 15

15

Refactoring:

Converting Functionality into Functions
Identify functionality that should be put into a function
What should the function do?
What is the function’s input?
What is the function’s output (i.e., what is returned)?
Define the function
Write comments
Test the function programmatically
Call the function where appropriate

Create a main function that contains the “driver” for
your program

Put at top of program
Call main at bottom of program

Feb 16, 2021 Sprenkle - CSCI111 16

16

Review: Bottom-Up Development

Use the function in context/

call the function @

Define a function @ Function
» Document

» Test the function

Feb 16, 2021 Sprenkle - CSCI111 17

17

test module’s testEqual function

Example from yesterday

def testWinPercentage():
test.testEqual(calculateWinPercentage(@, 1), 0)
test.testEqual(calculateWinPercentage(2, 2), .5
test.testEqual(calculateWinPercentage(3, 7), .3
test.testEqual(calculateWinPercentage(l, @), 1)
Could add a parameter for the

number of decimal places of precision

)
)

testWinPercentage()

‘ After confirming that the function works...

Feb 16, 2021 Sprenkle - CSCI111 18

18

test module’s testEqual function

Example from yesterday
def testWinPercentage():

test.testEqual(calculateWinPercentage(2, 2),

testWinPercentage()
main()

Comment out call to test function.
Callmain.

Feb 16, 2021 Sprenkle - CSCI111

.5
test.testEqual(calculateWinPercentage(3, 7), .3
test.testEqual(calculateWinPercentage(l, @), 1)

test.testEqual(calculateWinPercentage(@, 1), 0)

)
)

19

19

Docstring on Function

def calculateWinPercentage(wins, losses):

[IRIET]

and losses.
Parameters:
- wins: a non-negative integer representing the number of wins

divide by zero error
Post: returns the win percentage (between @ and 1, inclusive)

[IRIET]

Good docstring because
Describes parameters
Describes what is return (is it a %?)
Describes error cases

Feb 16, 2021 Sprenkle - CSCI111

Calculates and returns a win percentage, based on the given wins

- losses: a non-negative integer representing the number of losses
Pre: either wins or losses must be greater than 1 or will throw a

20

20

Development approach:

TOP-DOWN DEVELOPMENT

Feb 16, 2021 Sprenkle - CSCI111 21

21

Top-Down Development

| have a problem

But, that problem can be broken into smaller
problems

Solution:
Problems = functions!

Divide and Conquer!

Feb 16, 2021 Sprenkle - CSCI111 22

22

Example: Top-Down Development

| want to calculate and then display a team’s
win/loss percentage based on user input

Feb 16, 2021 Sprenkle - CSCI111 23

23

Example: Top-Down Development

| want to calculate and then display a team’s
win/loss percentage based on user input

Algorithm:
Get user input for number of wins and losses
Calculate the win percentage

Display the results

Feb 16, 2021 Sprenkle - CSCI111 24

24

Example: Top-Down Development —
Design: Identify Functions
| want to calculate and then display a team’s
win/loss percentage based on user input

Algorithm: main

/

» Get user input for number of wins and losses
calculateWinPercentage

» Calculate the win percentage

K > Display the results Think about how the function
will be used first> API!

Feb 16, 2021 Sprenkle - CSCI111 25

25

Example: Top-Down Development —

Starting Implementation...

def main(): Think about how the function
get user input
winPct = calculateWinPercentage(wins, losses)
display results

def calculateWinPercentage(numWins, numLosses):

Given the number of wins and losses,
calculates and returns the win percentage

main()

Feb 16, 2021 Sprenkle - CSCI111 26

26

Summary: Development Approaches

There are several development approaches
Not mutually exclusive

Often will switch between them, depending on
circumstances

As programs grow in size, there is no “one way”
to write code

But there may be better ways to make progress

If you’re stuck, step back and reassess your approach

Feb 16, 2021 Sprenkle - CSCI111 27

27

Note change in naming scheme:

Lab 4 Overview ., 5~

Calling functions defined in the same program
Refactoring code

Modifying function definitions

Testing functions

Creating a module

Writing a program with a function from scratch

Feb 16, 2021 Sprenkle - CSCI111 28

28

