Objectives

- Review algorithms
- Introduction to Programming Language
- Programming in Python
 - ➤ Data types
 - **Expressions**
 - **≻** Variables
- Broader Issue: Algorithms postponed to next Friday

Jan 14, 2022 Sprenkle - CSCI111 1

Review

- What is an algorithm?
- Pick your favorite TV show/movie: what is its algorithm?
- What did we learn about computer science from the peanut butter and jelly exercise?

"Really?" with Professor Sprenkle

• In *TV Guide*, showrunners of *Once Upon a Time* were asked, "Give us an algorithm for your show."

Jan 14, 2022 Sprenkle - CSCI111 3

3

"Really?" with Professor Sprenkle

- In *TV Guide*, showrunners of *Once Upon a Time* were asked, "Give us an algorithm for your show."
 - Example (for first season): 1 part Snow White + 1 part Lost + .5 Alias
- They said, "We don't understand math. That's why we became writers."

Review: Discussion of PB&J

- The computer: a blessing and a curse
 - > Recognize and meet the challenge!
- Be unambiguous, descriptive
 - Must be clear for the computer to understand
 - "Do what I meant! Not what I said!"
 - Motivates programming languages
- Creating/Implementing an algorithm
 - ➤ Break down pieces
 - ➤ Try it out
 - Revise

Jan 12, 2022

Sprenkle - CSCI111

5

Review: Discussion of PB&J

- Steps need to be done in a particular order
- Be prepared for special cases
 - > Any other special cases we didn't discuss?
- Aren't necessarily spares in real life
 - Need to write correct algorithms!
- Reusing similar techniques
 - > Do the same thing with a little twist
- Looping
 - > For repeating the same action

Jan 12, 2022

Sprenkle - CSCI111

Other Lessons To Remember

- A cowboy's wisdom: Good judgment comes from experience
 - ➤ How can you get experience?
 - ➤ Bad judgment works every time
- Program errors can have bad effects
 - Prevent the bad effects (that's the thinking part)--especially before you turn in your assignment!

Jan 12, 2022 Sprenkle - CSCI111 7

7

Parts of an Algorithm

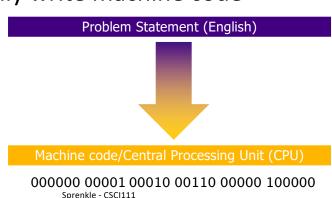
- Input, Output
- Primitive operations
 - What data you have, what you can do to the data
- Naming
 - > Identify things we're using
- Sequence of operations
- Conditionals
 - ➤ Handle special cases
- Repetition/Loops
- Subroutines
 - > Call, reuse similar techniques

An overview for the semester!

Computational Problem Solving 101

- Computational Problem:
 A problem that can be solved by logic
- To solve the problem:
 - Create a model of the problem
 - Design an algorithm for solving the problem using the model
 - Write a **program** that *implements* the algorithm

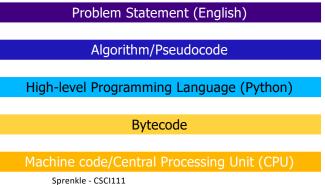
Jan 12, 2022 Sprenkle - CSCI111


9

Why Do We Need Programming Languages?

- Computers can't understand English
 - ➤ Too ambiguous

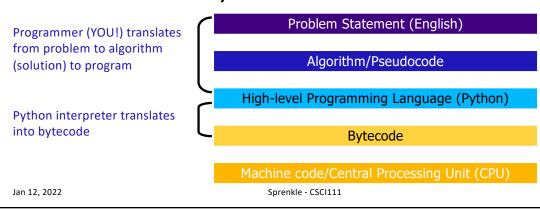
Live Jazz!


Humans can't easily write machine code

Jan 12, 2022

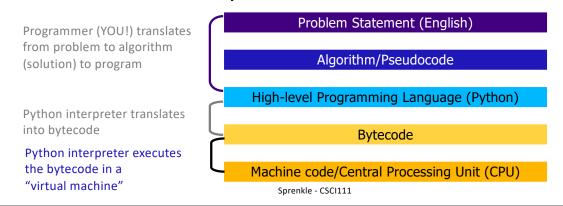
Why Do We Need Programming Languages?

- Computers can't understand English
 - ➤ Too ambiguous
- Humans can't easily write machine code


Jan 12, 2022

12

11


Why Do We Need Programming Languages?

- Computers can't understand English
 - ➤ Too ambiguous
- Humans can't easily write machine code

Why Do We Need Programming Languages?

- Computers can't understand English
 - ➤ Too ambiguous
- Humans can't easily write machine code

13

Programming Languages

- Programming language:
 - Specific rules for what is and isn't allowed
 - Must be exact
 - > Computer carries out commands as they are given
- Syntax: the symbols given
- Semantics: what it means
- Example:
 - ► III * IV means 3 × 4 which evaluates to 12
 - > cp src dest means copy the file named src to dest
- Programming languages are unambiguous

Another Syntax and Semantics Example

What is the *syntax*? What is the *semantics*?

Jan 12, 2022 Sprenkle - CSCI111 15

15

Python Is ...

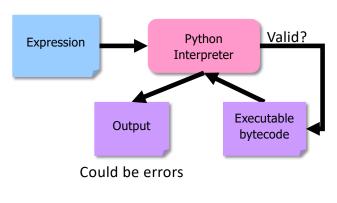
- A programming language
 - ➤ The *most* popular programming language

http://www.tiobe.com/tiobe-index/

January Headline:
Python is TIOBE's Programming Language
of 2021! (and 2020)

 An interpreter (which is a program) that understands and executes Python code

Python


- A common interpreted programming language
 - > Runs on many operating systems
- First released by Guido van Rossum in 1991
- Named after Monty Python's Flying Circus
- Minimalist syntax, emphasizes readability
- Flexible, fast, useful language
- Used by scientists, engineers, systems programmers

Jan 12, 2022 Sprenkle - CSCI111 17

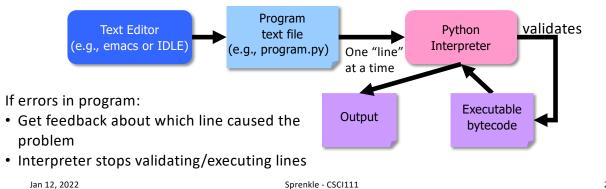
17

Python Interpreter

- 1. Validates Python programming language expression(s)
 - Enforces Python syntax
 - Reports syntax errors
- Executes expression(s)
 - Runtime errors (e.g., divide by 0)
 - Semantic errors (not what you meant)

Two Modes to Execute Python Code

- Interactive: using the interpreter
 - ➤ Try out Python expressions
- Batch: execute scripts (i.e., files containing Python code)
 - ➤ What we'll usually write


Jan 12, 2022 Sprenkle - CSCI111 19

19

Interactive Mode Run by typing "python3" in terminal sprenkle@Saras-MacBook-Pro ^\$ python3 Python 3.7.3 (v3.7.3:ef4ec6ed|2 Mar 25 2019, 16:52:21) [Clang 6.0 (clang-600.0.57)] on darwin Type "help", "copyright", "credits" or "license" for more information. Type in the expression Python displays the result >>> "word" Error Message: >>> word Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'word' is not defined >>> print 4+5 File "<stdin>", line 1 We'll talk more later about why this is an error print 4+5 SyntaxError: Missing parentheses in call to 'print'. Did you mean print(4+5)? print: Special function to display output Sprenkle - CSCI111 Jan 12, 2022 20

Batch Mode

- 1. Programmer types a program/script into a text editor
- 2. An interpreter turns each expression into bytecode and then executes each expression

21

Parts of an Algorithm

- → Input, Output
- Primitive operations
 - What data you have, what you can do to the data
- Naming
 - Identify things we're using
- Sequence of operations
- Conditionals
 - Handle special cases
- Repetition/Loops
- Subroutines
 - Call, reuse similar techniques

Printing Output

- print is a special command or a function
 - ➤ Displays the result of expression(s) to the terminal
 - >Automatically adds a '\n' (carriage return) after it's printed
 - Relevant when have multiple print statements

print("Hello, class")

string literal

Syntax: a pair of double quotes Semantics: represents text

Jan 12, 2022 Sprenkle - CSCI111

23

Parts of an Algorithm

- Input, Output
- Primitive operations

- What data you have, what you can do to the data
- Naming
 - Identify things we're using
- Sequence of operations
- Conditionals
 - Handle special cases
- Repetition/Loops
- Subroutines
 - > Call, reuse similar techniques

Primitive Data Types

- Primitive data types represent data
- Python provides some basic or primitive data types
- Broadly, the categories of primitive types are
 - **≻** Numeric
 - **≻**Boolean
 - **≻**Strings

Jan 12, 2022 Sprenkle - CSCI111 25

25

Numeric Primitive Types

Python Data Type	Description	Examples
int	Plain integers (32-bit precision)	-214, -2, 0, 2, 100
float	Real numbers	.001, -1.234, 1000.1, 0.00, 2.45
complex	Imaginary numbers (have real and imaginary part)	1j * 1J → (-1+0j)

How big (or small or precise) can we get?

- Computer cannot represent all values
- Problem: Computer has a finite capacity
 - The computer only has so much memory that it can devote to one value.
 - > Eventually, reach a cutoff
 - Limits size of value
 - Limits precision of value

PI has more decimals, but we're out of space!

0 0 0 0 0 3 .1 4 1 5 9 2 6 5

Jan 12, 2022

Example: in Python interpreter, .1 + .1 + .1 yields 0.30000000000000000.

* In reality, computers represent data in binary.

27

27

Strings: **str**

- Indicated by double quotes " " or single quotes ' '
- Treat what is in the " " or ' ' literally
 - >Known as string literals
- Examples:
 - >"Hello, world!"
 - >'c'
 - "That is Buddy's dog."

Single quote must be inside double quotes*
*Exception later

Sprenkle - CSCI111

Jan 12, 2022

Booleans: bool

- 2 values
 - **≻**True
 - **≻**False
- Much more on these later...

Jan 12, 2022 Sprenkle - CSCI111

29

What is the value's type?

Value	Туре
52	
-0.01	
4+6j	
"3.7"	
4047583648	
True	
'false'	

 Jan 12, 2022
 Sprenkle - CSCI111
 30

What is the value's type?

Value	Туре
52	int
-0.01	float
4+6j	complex
"3.7"	str
4047583648	int
True	boolean
'false'	str

Jan 14, 2022 Sprenkle - CSCI111 31

31

Parts of an Algorithm

- Input, Output
- Primitive operations
 - What data you have, what you can do to the data
- Naming
 - > Identify things we're using
- Sequence of operations
- Conditionals
 - > Handle special cases
- Repetition/Loops
- Subroutines
 - > Call, reuse similar techniques

Introduction to Variables

- Variables save data/information
 - Example: first slice of bread or knife A
 - Type of data the variable holds can be any of primitive data types as well as other data types we'll learn about later
- Variables have names, called identifiers

Jan 14, 2022 Sprenkle - CSCI111 33

33

Variable Names/Identifiers

- A variable name (identifier) can be any one word that:
 - Consists of letters, numbers, or _
 - Does not start with a number
 - ➢ Is not a Python reserved word
 - Examples: for while def
- Python is case-sensitive:
 - change isn't the same as Change

Variable Name Conventions

- Variables start with a lowercase letter
- Convention: Constants (values that won't change) are all capitals
 - > (more on this later...)
- Example: Variable for the current year
 - > currentYear
 - >current_year
 - > CURRENT_YEAR
 - > currentyear
 - > current vear

Naming doesn't matter to computer, matters to humans

Harder to read

No spaces allowed

Jan 14, 2022 Sprenkle - CSCl111 33

35

Importance of Variable Naming

- Helps you remember what the variable represents
- Easier for others to understand your program
- Examples:

Info Represented	Good Variable Name	
A person's first name	firstName, first_name	
Radius of a circle	radius	
If someone is employed or not	isEmployed	

Review: Computational Problem Solving

- Computational Problem:
 - A problem that can be solved by logic
- To solve the problem:
 - Create a model of the problem
 - Design an **algorithm** for solving the problem using the model
 - ➤ Write a **program** that *implements* the algorithm

Jan 14, 2022 Sprenkle - CSCI111 37

37

Modeling Information

- How would you model this information?
- What data type best represents the info?

Info Represented	Data Type	Variable Name
A person's salary		
Sales tax		
If item is taxable		
Course name		
Graduation Year		

Modeling Information

- How would you model this information?
- What data type best represents the info?

Info Represented	Data Type	Variable Name
A person's salary	int or float	salary
Sales tax	float	salesTax
If item is taxable	bool	isTaxable
Course name	str	course_name
Graduation Year	int	gradYear

Variable names are just suggestions, Many other possible variable names

Jan 14, 2022

Sprenkle - CSCI111

39

Assignment Statements

- Variables can be given a value using =
 - >Syntax: <variable> = <expression>
 - >Semantics: <variable> is set to value of <expression>
- After a variable is set to a value, the variable is said to be *initialized*
- Examples: month = 1
 impt_num = 4.5
 monthName = 'January'

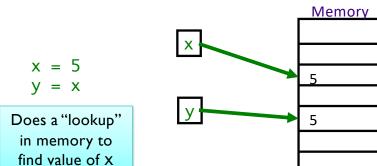
These are **not** equations! Read "=" as "is set to"

Variables: The Rules

- Only the variable(s) to left of the = in the current statement change
 - >We'll only have one variable on the left
- Initialize a variable before using it on the right-hand side (rhs) of a statement

Jan 14, 2022 Sprenkle - CSCI111 41

41


Assignment Statements

x = 5y = x

- Statements execute in order, from top to bottom
- Value of X does not change because of second assignment statement

Assignment Statements

Statements execute in order, from top to bottom

Computer

 Value of X does not change because of second assignment statement

Jan 14, 2022 Sprenkle - CSCI111 4

43

Literals

- Pieces of data that are not variables are called literals
 - >We've been using these a lot
- Examples:
 - >4
 - >3.2
 - > 'q'
 - >"books"

Jan 14, 2022

Sprenkle - CSCI111

Numeric Arithmetic Operations

Symbol	Meaning
+	Addition
-	Subtraction
*	Multiplication
/	Division
%	Remainder ("mod")
**	Exponentiation (power)

Jan 14, 2022 Sprenkle - CSCI111 45

45

Arithmetic & Assignment

- You can use the assignment operator (=) and arithmetic operators to do calculations
 - 1. Calculate right hand side
 - 2. Assign value to variable
- Remember your order of operations! (PEMDAS)
- Examples:

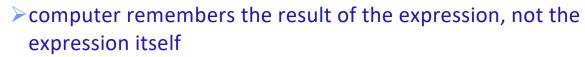
$$x = 4+3*10$$

$$y = 3/2.0$$

$$Z = X+Y$$

The right-hand sides are **expressions**, just like in math.

Arithmetic & Assignment


• Examples:

$$x = 4+3*10$$

$$y = 3/2.0$$

- z = x+y
- For last statement

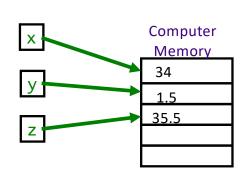
Computer

Memory

Jan 14, 2022 Sprenkle - CSCI111 47

47

Arithmetic & Assignment


• Examples:

$$x = 4+3*10$$

$$y = 3/2.0$$

$$z = x+y$$

For last statement

- ▶need to "lookup" values of X and Y
- computer remembers the result of the expression, not the expression itself

Jan 14, 2022

Sprenkle - CSCI111

Looking Ahead

- Textbook Pre Lab 1 assignment due before lab on Tuesday
 - Covers some things we haven't yet covered in class; we'll review on Tuesday
- Extra Credit Opportunity:
 - Read an article that relates to CS
 - >Summarize it on the discussions under "Extra Credit"
 - 5 pts extra credit added to lab grade

Jan 14, 2022 Sprenkle - CSCI111 45