
1/21/22

1

Objectives
•User input
•Software development practices

ØTesting
ØDebugging
ØIteration

•Broader Issue: Algorithms

Jan 21, 2022 Sprenkle - CSCI111 1

1

Review
•What is our development process?

ØProgramming, in general
ØFor lab work

•What are the two division operators?
•How should you “read” this expression? What does it

mean?
Ørem = num1 % num2

Jan 21, 2022 Sprenkle - CSCI111 2

2

1/21/22

2

Division Terminology
•Dividend: number being divided
•Divisor: by how much the dividend is divided
•Quotient: the result

•Example Python statement:
Øquotient = dividend/divisor

Jan 21, 2022 Sprenkle - CSCI111 3

3

Brainstorm
• What useful thing does % 10 do?

Ø 3 % 10 = 3
Ø 51 % 10 = 1
Ø 40 % 10 = 0
Ø 678 % 10 = 8
Ø 12543 % 10 = 3

• What useful thing does // 10 do (integer division)?
Ø 3 // 10 = 0
Ø 51 // 10 = 5
Ø 40 // 10 = 4
Ø 678 // 10 = 67
Ø 12543 // 10 = 1254

• What useful thing does % 2 do?
Jan 21, 2022 Sprenkle - CSCI111 4

4

1/21/22

3

Brainstorm
• What useful thing does % 10 do?

Ø 3 % 10 =
Ø 51 % 10 =
Ø 40 % 10 =
Ø 678 % 10 =
Ø 12543 % 10 =

• What useful thing does // 10 do (integer division)?
Ø 3 // 10 =
Ø 51 // 10 =
Ø 40 // 10=
Ø 678 // 10 =
Ø 12543 // 10 =

• What useful thing does % 2 do?
Jan 21, 2022 Sprenkle - CSCI111 5

Gives the last digit in the number

Shifts the number right by one

Even/odd; alternating pattern

5

Trick: Type Conversion
•You can convert a variable’s type

ØUse the type’s constructor

Jan 21, 2022 Sprenkle - CSCI111 6

Conversion Function/Constructor Example Value
Returned

int(<number or string>) int(3.77)
int("33")

3
33

float(<number or string>) float(22) 22.0

str(<any value>) str(99) "99"

6

1/21/22

4

Trick: Arithmetic Shorthands
•Called extended assignment operators
• Increment Operator

Øx = x + 1 can be written as x += 1
•Decrement Operator

Øx = x – 1 can be written as x -= 1
•Shorthands are similar for *, /, // :

Øamount *= 1.055
Øx //= 2

Jan 21, 2022 Sprenkle - CSCI111 7

7

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data

• Naming
Ø Identify things we’re using

• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 21, 2022 Sprenkle - CSCI111 8

8

1/21/22

5

Interactive Programs
•Meaningful programs often need input from users

•Demo: input_demo.py

Jan 21, 2022 Sprenkle - CSCI111 9

2.8 in Text Book

9

Getting Input From User
•input is a function

ØFunction: A command to do something
•A “subroutine”

•Syntax:
Øinput(<string_prompt>)

•Semantics:
ØDisplay the prompt <string_prompt> in the terminal
ØRead in the user’s input and return it as a string/text

Jan 21, 2022 Sprenkle - CSCI111 10

10

1/21/22

6

Getting Input From User
•Typically used in assignments
•Examples:

Øname=input("What is your name? ")
•name is assigned the string the user enters

Ø width=eval(input("Enter the width:"))
•What the user enters is evaluated (as a number) and

assigned to width
•Use eval function because expect a number from user
•Alternatively, could use int or float (conversion

functions) instead of eval
Jan 21, 2022 Sprenkle - CSCI111 11

Prompt displayed to user

11

Getting Input From User
•Typically used in assignments
•Examples:

Øname=input("What is your name? ")
•name is assigned the string the user enters

Ø width=eval(input("Enter the width:"))
•What the user enters is evaluated (as a number) and

assigned to width
•Use eval function because expect a number from user
•Alternatively, could use int or float (conversion

functions) instead of eval
Jan 21, 2022 Sprenkle - CSCI111 12

Prompt displayed to user

What do you think the code looks like for input_demo.py?

12

1/21/22

7

Getting Input from User
color = input("What is your favorite color? ")

Jan 21, 2022 Sprenkle - CSCI111 13

> python3 input_demo.py
What is your favorite color? blue
Cool! My favorite color is _light_ blue !

Terminal:
Grabs every character up to
the user presses “enter”

Semantics: Sets the variable color to the user’s input

input_demo.py

13

Identify the Parts of a Program

Jan 21, 2022 Sprenkle - CSCI111 14

Demonstrate numeric and string input
by Sara Sprenkle for CS111
#

color = input("What is your favorite color? ")
print("Cool! My favorite color is _light_", color, "!")

rating = eval(input("On a scale of 1 to 10, how much do
you like Zendaya? "))
print("Cool! I like her", rating*1.8, "much!")

Identify the comments, variables, functions,
expressions, assignments, literals

input_demo.py

14

1/21/22

8

Identify the Parts of a Program

Jan 21, 2022 Sprenkle - CSCI111 15

Demonstrate numeric and string input
by Sara Sprenkle for CS111
#

color = input("What is your favorite color? ")
print("Cool! My favorite color is _light_", color, "!")

rating = eval(input("On a scale of 1 to 10, how much do
you like Zendaya? "))
print("Cool! I like her", rating*1.8, "much!")

Identify the comments, variables, functions,
expressions, assignments, literals

expression

15

Testing Process

•Test case:
Øinput used to test the program
Øexpected output given that input

•Verify if output is what you expected

Program

Verify output

OutputInput

Expected
Output

Test Case

Jan 21, 2022 Sprenkle - CSCI111 16

16

1/21/22

9

Testing Process

• Test case:
Øinput used to test the program
Øexpected output given that input

• Verify if output is what you expected
• Goal: create good test cases that will reveal if there is a

problem in your code

Program

Verify output

OutputInput

Expected
Output

Test Case

If output is not what you expect…
Jan 21, 2022 Sprenkle - CSCI111 17

17

Review: Debugging
• After executing program and output did not match what you expected
• Identify the problems in your code

Ø Edit the program to fix the problem
Ø Re-execute/test until all test cases pass

• The error is called a “bug” or a “fault”
• Diagnosing and fixing error is called debugging

Jan 21, 2022 Sprenkle - CSCI111 18

Interpreter
(python)

Program
text file

program.py
Output

Text Editor
(emacs or IDLE)

ERROR! (from testing)

Identify bug, fix

18

1/21/22

10

Practice: A Computational Algorithm
•Find the average of two numbers
•Start the Process:

1. Create a sketch of how to solve the problem (the algorithm)
2. Fill in the details in Python
3. Come up with good test cases for the problem

Jan 21, 2022 Sprenkle - CSCI111 19

19

Practice: A Computational Algorithm
•Find the average of two numbers
•Test Cases

Jan 21, 2022 Sprenkle - CSCI111 20

Input
num1 num2 Expected Output

20

1/21/22

11

A Computational Algorithm
•Algorithm for finding the average of two numbers:

1. “Hard-code” two numbers
• Later: get the two numbers from user

2. Calculate average
3. Print average

•Test cases for finding the average
ØTest both integers
ØTest with at least one float
ØTest numbers less than or equal to 0

Jan 21, 2022 Sprenkle - CSCI111 21average2.py

21

Formalizing Process of
Developing Computational Solutions

1.Create a sketch of how to solve the problem
(the algorithm)

2.Fill in the details in Python
3.Execute the program with good, varied test

cases to try to reveal errors
4.If output doesn’t match your expectation, debug

the program
Ø (Where is the problem? How do I fix it?)

Jan 21, 2022 Sprenkle - CSCI111 22

22

1/21/22

12

Suggested Approach to Development
• Input is going to become fairly routine.
•Wait to get user input until you have figured out the

rest of the program/problem.

Jan 21, 2022 Sprenkle - CSCI111 23

23

Formalizing Process of
Developing Computational Solutions

1.Create a sketch of how to solve the problem
(the algorithm)

2.Fill in the details in Python
3.Execute the program with good, varied test cases

to try to reveal errors
4. If output doesn’t match your expectation, debug

the program
Ø (Where is the problem? How do I fix it?)

5. Iterate to improve your program
Ø Better variable names, better input, more efficient, …

Jan 21, 2022 Sprenkle - CSCI111 24

24

1/21/22

13

Design Patterns
•General, repeatable solution to a commonly occurring

problem in software design
ØTemplate for solution

Jan 21, 2022 Sprenkle - CSCI111 25

25

Design Patterns
•General, repeatable solution to a commonly occurring

problem in software design
ØTemplate for solution

•Example (Standard Algorithm)
ØGet input from user
ØDo some computation
ØDisplay output

Jan 21, 2022 Sprenkle - CSCI111 26

print
Assign.
Assign. x = input("…")

ans = …
print(ans)

26

1/21/22

14

Broader Issue: Typical Process
1.Break into assigned groups
2. Introduce yourselves
3.Answer questions in groups
4.Discuss in class

Jan 21, 2022 Sprenkle - CSCI111 27

27

Groups

Jan 21, 2022 Sprenkle - CSCI111 28

28

1/21/22

15

Broader CS Issues
•Good summaries!

ØGood English, complete sentences
ØFollowed the specifications

•Good, thoughtful questions
ØA lot are teasers to what I hope we’ll talk about later this

term
• Interest scale is 0 to 9

ØRecall: Lab 0
ØWhy we start at 0 will be clearer soon…

Jan 21, 2022 Sprenkle - CSCI111 29

29

Algorithms Everywhere
• How does knowing how your brain thinks about code affect how

you think about code?
• Comment on these from articles:

Ø “Because it’s less familiar, algorithm tends to emphasize our
uncertainty.”

Ø “An algorithm is, essentially, a brainless way of doing clever things.”
• What are examples of algorithms that you do every day?
• What is machine learning useful for?
• What aren’t algorithms useful for?
• What would be some useful algorithms, specific to W&L students?

Ø What are problems that are difficult—but useful—to solve?

Jan 21, 2022 Sprenkle - CSCI111 30

30

1/21/22

16

My Corrections to Articles
•“In his book The Master Algorithm, Pedro Domingos

offers a masterfully simple definition: ‘An algorithm is,’
Domingos writes, ‘a sequence of instructions telling a
computer what to do.’”

•“An algorithm is, essentially, a brainless way of doing
clever things.”

Jan 21, 2022 Sprenkle - CSCI111 31

31

Looking Ahead
•Pre Lab due Tuesday before lab
•Broader Issue:

Jan 21, 2022 Sprenkle - CSCI111 32

32

