Objectives

Refining our development process

Passing parameters

Feb 7, 2022 Sprenkle - CSCI111 1

Review

With respect to functions, what are options for how we
organize our program?

How do we document a function? What should its
content be?

How do we define a test case?
How can we test functions easily?

What do we need to test functions?

Feb 7, 2022 Sprenkle - CSCI111 2

Practice: Trace through the Program’s Execution

What is the output of this program?

Example: user enters 4

def main(Q):
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)

def square(n):
return n * n

main()

Feb 7, 2022 Sprenkle - CSCI111 p racticel. Py

Practice

What is the output of this program?

Example: user enters 4

def main(Q):
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)
print("The original num was", n)

def square(n):
return n * n

main()

Feb 7, 2022 Sprenkle - CSCI111 pl"ClCt'i. cel. by

Practice
What is the output of this program?

Example: user enters 4

def main(Q):
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)

print("The original num was", n) 1&.___..

def square(n): Error! n does not
* .
return n * n have a value in
mainC) function main()

Feb 7, 2022 Sprenkle - CSCI111 5

Review: Variable Scope

Know “lifetime” of variable
Only during execution of function
Related to idea of “scope”

Consider: how many functions probably use a variable like
x or i? What would the impact be on our program:s if all
variables had global scope?

Example: round(x, n)
In general, our only global variables will be constants
because we don’t want them to change value

e.g., EIEIO

Feb 7, 2022 Sprenkle - CSCI111 6

Review: Testing Functions

Functions make it easier for us to test our code

We can write code to test the functions
Test Case:
Input: parameters

Expected Output: what we expect to be returned
» Or if state changed as we expected

We can verify the function programmatically

“programmatically” — automatically execute test cases and
verify that the actual returned result is what we expected

No user input required!

Feb 4, 2022 Sprenkle - CSCI111

Review: test Module

Not a standard module
Included with our textbook
More sophisticated testing modules but this is sufficient for us

Function:
testEqual (actual, expected[, places=5])
Parameters: actual and expected results for a function.
Displays "Pass" and returns True if the test case passes.

Displays error message, with expected and actual results, and
returns False if test case fails.

Feb 4, 2022 Sprenkle - CSCI111

Example: Testing sumEvens

import test

def testSumEvens(): This is the actual result
actual = sumEvens(10) from our function

= 20 This is what we expect the result to be
test.testEqual(actual,)

What are other good test cases?

def sumEvens(limit):
total = 0
for x in range(@, limit, 2):
total += x
return total

testSumEvens.py

Feb 4, 2022 Sprenkle - CSCI111 9

Practice

Define the function to calculate our favorite
expression: i+ 3j—5

What does the function do?

What is its input?

What is its output?
Test the function

Use the function

our_favorite_expression.py

Feb 4, 2022 Sprenkle - CSCI111 10

10

Writing a “Good” Function

Should be an “intuitive chunk”
Doesn’t do too much or too little

If does too much, try to break into more functions
Should be reusable
Should have a descriptive, “action” name
Should have a comment that tells what the function does

Feb 4, 2022 Sprenkle - CSCI111 11

11

Evolving General Design Patterns

Former general design pattern:
Optionally, get user input

Do some computation
Display results

Now general design pattern:
Optionally, get user input

Do some computation by calling functions, get results
Display results

Feb 4, 2022 Sprenkle - CSCI111 12

12

Development Process: Bottom-Up

Use the function in context/
call the function

Function

Define a function 1

Document

Test the function

Feb 4, 2022 Sprenkle - CSCI111 13

13

Example: Bottom-Up Development
We just did Bottom-Up Development!

Define (and document and test) a function that
Calculates our favorite expression
Returns the the result of that expression
Create a program that
Prompts foriand j
Displays the the result of that expression

Febd, 2022 sene-coin— OUP_favorite_expression.py

14

Practice: Finding a Team’s Winning Percentage

There are lots of ways to develop programs

Let’s go back to the way we originally developed
programs

Problem:

Prompt the user for a team’s wins and losses and display the
team’s win percentage

Sprenkle - CSCI111 Wlnpercent . py

Feb 4, 2022 15

15

Another development approach

REFACTORING

Feb 7, 2022

Sprenkle - CSCI111 16

16

Refactoring

After you’ve written some code and it passes all your test cases, the code is
probably still not perfect

Refactoring is the process of improving your code without changing its
functionality
Organization
Abstraction
Example: Easier to read, change
Easier to test
Part of iterative design/development process

Where to refactor with functions
Duplicated code, known as a “Code smell”
Reusable code

Multiple lines of code for one purpose

Feb 7, 2022 Sprenkle - CSCI111 17

17

Example: PB & J

1. Gather materials (bread, PB, J, knives, plate)
. Open bread

Put 2 pieces of bread on plate

. Spread PB on one side of one slice

. Spread Jelly on one side of other slice

Place PB-side facedown on Jelly-side of bread

. Close bread * Which of these are the “core” part of

Clean knife making a PB & J sandwich?

* How would you describe the rest of
the parts?

OO ~NOUA WN

Put away materials

Feb 7, 2022 Sprenkle - CSCI111 18

18

Example: PB & J

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread .
?3. Put 2 pieces of bread on plate)

. Spread PB on one side of one slice

. Spread Jelly on one side of other slice

Place PB-side facedown on Jelly-side of bread /

. Close bread
Clean knife

.k0.00\lGhU'I-h

Put away materials

Feb 7, 2022 Sprenkle - CSCI111

19

Example: PB & J as Functions

1. Gather materials (bread, PB, J, knives, plate)
. Open bread

J
. Put 2 pieces of bread on plate)
. Spread PB on one side of one slice
. Spread Jelly on one side of other slice

Place PB-side facedown on Jelly-side of bread

. Close bread def main():()

_ prepare

Clean knife makePBJSandwich()
Put away materials

/
© o o v s Wb

main()

Feb 7, 2022 Spre

20

Example: PB & J as Functions, 10 x
(1. Gather materials (bread, PB, J, knives, plate) 1
2. Open bread

Put away materials

Feb 7, 2022 Sprenkle - CSCI111 21

?3. Put 2 pieces of b def ggé;ggé()
4. Spread PB on on for sandwich in range(10):
5. Spread Jelly on o makePBJSandwich()
\ 6. Place PB-side fac mainC)
7. Close bread
8. Clean knife
0.

21

Refactoring:

Converting Functionality into Functions
Identify functionality that should be put into a function
What should the function do?

What is the function’s input?
What is the function’s output (i.e., what is returned)?

Define the function

Test the function programmatically
Comment out the other code temporarily

Call the function where appropriate

Create a main function that contains the “driver” for your program
Put at top of program

Callmain at bottom of program

Write documentation for function

Feb 7, 2022 Sprenkle - CSCI111 22

22

11

Writing a “Good” Function

Should be an “intuitive chunk”
Doesn’t do too much or too little

If does too much, try to break into more functions
Should be reusable
Should have a descriptive, “action” name
Should have a comment that tells what the function does

Feb 4, 2022 Sprenkle - CSCI111 23

23

Refactoring: Finding a Team’s Winning Percentage

Problem:

Prompt the user for a team’s wins and losses and display the
team’s win percentage

What code can we convert into a function?

winpercent.py

Feb 4, 2022 Sprenkle - CSCI111 24

24

12

Refactoring: Finding a Team’s Winning Percentage

Problem:

»Prompt the user for a team’s wins and losses and display the
team’s win percentage

What code can we convert into a function?
»Generalize: a success percentage

»Calculates a success percentage, given the successes and
failures

winpercent.py

Feb 4, 2022 Sprenkle - CSCI111 25

25

13

