
1

Objectives
•Conditionals
•Creating modules
•Exam review

Feb 9, 2022 Sprenkle - CSCI111 1

1

Review
• What makes a “good” function?
• What are benefits of functions?
• What does it mean to “programmatically test” a function?

ØWhat are characteristics of functions that we can
programmatically test?

• How do we organize programs with functions (so far)?
• What development approaches did we discuss?

ØWhat are their steps?

Feb 9, 2022 Sprenkle - CSCI111 2

2

2

Review: Writing a “Good” Function
• Should be an “intuitive chunk”

ØDoesn’t do too much or too little
ØIf does too much, try to break into more functions

• Should be reusable
• Should have an “action” name
• Should have a comment that tells what the function does

Feb 9, 2022 Sprenkle - CSCI111 3

3

Review: Why Write Functions?
• Allows you to break up a problem into smaller, more manageable

parts
• Makes your code easier to understand
• Hides implementation details (abstraction)

Ø Provides interface (input, output)

• Makes part of the code reusable so that you:
Ø Only have to write function code once
Ø Can debug it all at once

• Isolates errors
Ø Can make changes in one function (maintainability)

Feb 9, 2022 Sprenkle - CSCI111 4

4

3

Review: Where are Functions Defined?
•Functions can go inside program script

ØIf no main() function, defined before use/called
ØIf main() function, defined anywhere in script

•Functions can go inside a separate module

Feb 9, 2022 Sprenkle - CSCI111 5

5

Review: Refactoring:
Converting Functionality into Functions
1. Identify functionality that should be put into a function

Ø What should the function do?
Ø What is the function’s input?
Ø What is the function’s output (i.e., what is returned)?

2. Define the function
Ø Write comments

3. Test the function programmatically
Ø Comment out the other code temporarily

4. Call the function where appropriate
5. Create a main function that contains the “driver” for your program

Ø Put at top of program
6. Call main at bottom of program

Feb 9, 2022 Sprenkle - CSCI111 6

6

4

Why Refactoring?
•Common practice: write code, then realize it would be

better (more readable, reusable, …) if it were in a
function

•For us: helpful to separate the code implementation
from the function implementation

Feb 9, 2022 Sprenkle - CSCI111 7

7

Review: Testing Functions
• Functions make it easier for us to test our code
• We can write code to test the functions

ØTest Case:
• Input: parameters
• Expected Output: what we expect to be returned

Ø Or if state changed as we expected
ØWe can verify the function programmatically

• “programmatically” – automatically execute test cases and
verify that the actual returned result is what we expected

• No user input required!
Feb 9, 2022 Sprenkle - CSCI111 8

8

5

Review: test Module
• Not a standard module

ØIncluded with our textbook
ØMore sophisticated testing modules but this is sufficient for us

• Function:
ØtestEqual(actual, expected[, places=5])

• Parameters: actual and expected results for a function.
• Displays "Pass" and returns True if the test case passes.
• Displays error message, with expected and actual results, and

returns False if test case fails.
Feb 9, 2022 Sprenkle - CSCI111 9

9

test module’s testEqual function

Feb 9, 2022 Sprenkle - CSCI111 10

def testWinPercentage():
test.testEqual(calculateWinPercentage(0, 1), 0)
test.testEqual(calculateWinPercentage(2, 2), .5)
test.testEqual(calculateWinPercentage(3, 7), .3)
test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()

After confirming that the function works…

Could add a parameter for the
number of decimal places of precision

10

6

test module’s testEqual function

Feb 9, 2022 Sprenkle - CSCI111 11

def testWinPercentage():
test.testEqual(calculateWinPercentage(0, 1), 0)
test.testEqual(calculateWinPercentage(2, 2), .5)
test.testEqual(calculateWinPercentage(3, 7), .3)
test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()
main()

Comment out call to test function.
Call main.

11

Another Example of Programmatic Testing
•Testing a constructor/function/method that affects

state:

ØCall the constructor/function/method under test
ØCheck the resulting state

Feb 9, 2022 Sprenkle - CSCI111 12

def testGraphWin():
window = GraphWin("Title", 300, 200)
test.testEqual(window.getWidth(), 300)
test.testEquals(window.getHeight(), 200)
…

More on this later…
12

7

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data

• Naming
Ø Identify things we’re using

• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Feb 9, 2022 Sprenkle - CSCI111 13

13

Feb 9, 2022 Sprenkle - CSCI111 14

Making Decisions
• Sometimes, we do things only if some condition holds (i.e., “is true”)
• Examples

Ø If the PB is new (has a safety seal)
• Then, I will take off the safety seal

Ø If it is raining and it is cold
• Then, I will wear a raincoat

Ø If it is Saturday or it is Sunday
• Then, I will wake up at 9 a.m.
• Otherwise, I wake up at 7 a.m.

Ø If the shirt is purple or the shirt is on sale and blue
• Then, I will buy the shirt

14

8

Conditionals
•Sometimes, we only want to execute a statement in

certain cases
•Example: Finding the absolute value of a number

•|4| = 4
•|-10| = 10

ØTo get the answer, we multiply the number by -1 only if it’s a
negative number

ØCode:

Feb 9, 2022 Sprenkle - CSCI111 15

if x < 0 :
abs = x*-1

15

Feb 9, 2022 Sprenkle - CSCI111 16

if Statements
•Change the control flow of the program

fahr = eval(input("…"))

celsius = 5/9*(fahr-32)

print("celsius=", celsius)

x = eval(input("…"))

x < 0

abs = x * -1 abs = x

print("abs=", abs)

True False

Choose
the path

16

9

Other Constructs That Change Control Flow
•for loops

ØRepeats a loop body a fixed number of times before going to
the next statement after the for loop

Feb 9, 2022 Sprenkle - CSCI111 17

for x in range(10):

print("Hello")

print("Goodbye")

next_statement …

for x in range(10):
print("Hello")
print("Goodbye")

next_statement …

17

Other Constructs That Change Control Flow
•Function calls

Ø“Go execute some other code and then come back with the
result”

Feb 9, 2022 Sprenkle - CSCI111 18

x = function()
…

…

…

function()

18

10

Syntax of if statement: Simple Decision

Feb 9, 2022 Sprenkle - CSCI111 19

if condition :
statement1
statement2
…
statementn English Examples:

if it is raining :
I will wear a raincoat

if the PB is new :
Remove the seal

“then” Body
• Note indentation

ke
yw

or
d

19

Feb 9, 2022 Sprenkle - CSCI111 20

Conditions
•Syntax (typical, others later):

Ø<expr> <relational_operator> <expr>
•Evaluates to either True or False

ØBoolean type

20

11

Relational Operators
• Syntax: <expr> <relational_operator> <expr>
• Evaluates to either True or False

ØBoolean type

Feb 9, 2022 Sprenkle - CSCI111 21

Relational Operator Meaning

< Less than?

<= Less than or equal to?

> Greater than?

>= Greater than or equal to?

== Equals?

!= Not equals?

Use Python interpreter

Lo
w

 p
re

ce
de

nc
e

A
ft

er
 a

ri
th

m
et

ic
 o

pe
ra

to
rs

21

Feb 9, 2022 Sprenkle - CSCI111 22

Example: Using Conditionals
•Determine if a number is even or odd

evenorodd.py

x = eval(input("Enter a number: "))
remainder = x % 2
if remainder == 0 :

print(x, "is even")
if remainder == 1:

print(x, "is odd")

22

12

Common Mistake:
Assignment Operator vs. Equality Operator

•Assignment operator: =
•Equality operator: ==

Feb 9, 2022 Sprenkle - CSCI111 23

x = eval(input("Enter a number: "))
remainder = x%2
if remainder = 0 :

print(x, "is even.")

Syntax error

23

Syntax of if statement: Two-Way Decision

Feb 9, 2022 Sprenkle - CSCI111 24

if condition :
statement1
statement2
…
statementn

else :
statement1
statement2
…
statementn

English Example:
if it is Saturday or it is Sunday :

I wake up at 9 a.m.
else :

I wake up at 7 a.m.

“then” Body

“else” Body

ke
yw

or
ds

24

13

Feb 9, 2022 Sprenkle - CSCI111 25

If-Else statements (absolute values)

x < 0

abs *= -1

print("abs=", abs)

True

x < 0

abs = x * -1 abs = x

print("abs=", abs)

True FalseFalse: jump to next
statement

If statement If-else statement

abs = x
if x < 0 :

abs *= -1
print("abs=", abs)

if x < 0 :
abs = x * -1

else:
abs = x

print("abs=", abs)

25

Example: Using Conditionals
•Determine if a number is even or odd
•More efficient implementation

ØDon’t need to check if remainder is 1 because if it’s not 0, it
must be 1

Feb 9, 2022 Sprenkle - CSCI111 26

x = eval(input("Enter a number: "))
remainder = x % 2
if remainder == 0:

print(x, "is even")
else:

print(x, "is odd")

26

14

Feb 9, 2022 Sprenkle - CSCI111 27

Practice: Draw the Flow Chart
print("This program determines your birth year")
print("given your age and current year")
print()
age = eval(input("Enter your age: "))

if age > 120:
print("Don't be ridiculous, you can't be that old.")

else:
currentYear = eval(input("Enter the current year: "))
birthyear = currentYear – age
print()
print("You were either born in", birthyear, end=' ')
print("or", birthyear-1)

print("Thank you. Come again.")

What does this code do?

27

Function: max
•Given two numbers, returns the greater number

Feb 9, 2022 Sprenkle - CSCI111 28

28

15

Flow of Control: Using return

Feb 9, 2022 Sprenkle - CSCI111 29

def max(num1, num2):
if num1 >= num2:

return num1
else:

return num2

Is this implementation of
the function correct?

Review: What does a return
statement do/mean?

29

Flow of Control: Using return

Feb 9, 2022 Sprenkle - CSCI111 30

return num1

num1 >= num2
True False

return num2

def max(num1, num2):

return to caller

def max(num1, num2):
if num1 >= num2:

return num1
else:

return num2

Is this implementation of
the function correct?

30

16

Flow of Control: Using return

Feb 9, 2022 Sprenkle - CSCI111 31

def max(num1, num2):
if num1 >= num2:

return num1
return num2

Is this implementation of
the function correct?

31

Flow of Control: Using return

Feb 9, 2022 Sprenkle - CSCI111 32

return num1

num1 >= num2
True

return num2

def max(num1, num2):

return to caller

Implicit false branch:
Only way got here is if

the condition was
not True

def max(num1, num2):
if num1 >= num2:

return num1
return num2

Is this implementation of
the function correct?

32

17

Feb 9, 2022 Sprenkle - CSCI111 33

Practice: Speeding Ticket Fines
•Any speed clocked over the limit results in a fine of at

least $50, plus $5 for each mph over the limit, plus a
penalty of $200 for any speed over 90mph.

•Our function
ØInput: speed limit and the clocked speed
ØOutput: the appropriate fine
•What should the appropriate fine be if the user is not

speeding?

speedingticket.py

33

Exam Friday
• In-class, on paper

ØEmphasis on critical thinking
• Exam Preparation Document is on course web page
• Similar problems to class and lab

ØReview questions
ØWorksheets
ØProblems

• Content: up through Lab 4
• No broader issue this week

Feb 9, 2022 Sprenkle - CSCI111 34

34

18

Looking Ahead
•Lab 4

ØPracticing functions
ØDue Friday

•Exam Friday
•No broader issue this week

Feb 9, 2022 Sprenkle - CSCI111 35

35

