
1

Objectives
•Defining our own classes

March 21, 2022 Sprenkle - CSCI111 1

1

Review: Dictionaries
• What is a dictionary in Python?

ØWhat is it helpful for representing?
• What is the syntax for creating a new dictionary?
• How do we access a key’s value from a dictionary? (2 ways)

ØWhat happens if there is no mapping for that key?
• How do we create a key à value mapping in a dictionary?
• How do we iterate through a dictionary?
• Compare lists and dictionaries

ØWhat are their structures and properties? How are they
similar, different? When would you use one or the other?

March 21, 2022 Sprenkle - CSCI111 2

2

2

Discussion: Comparing Lists and Dictionaries
•What are their structures? Properties?
•How are they similar?
•How are they different?
•When do you use one or the other?

March 18, 2022 Sprenkle - CSCI111 3

3

Lists vs. Dictionaries

March 18, 2022 Sprenkle - CSCI111 4

Lists Dictionaries
integer positions (0, …)

to any type of value
Map immutable keys (int, float, string)

to any type of value

Ordered Unordered

Slower to find a value
(in or find) Fast to find a value (use key)

Fast to print in order Slower to print in order (by key)

Only as big as you make it Takes up a lot of space (so can add
elements in the middle)

4

3

Review: What do these solutions do?

March 21, 2022 Sprenkle - CSCI111 5

if key not in dictionary :
dictionary[key] = 1

else:
count = dictionary[key] + 1
dictionary[key] = count

if key not in dictionary :
dictionary[key] = 1

else:
dictionary[key] += 1

5

Review: Equivalent Solutions
A Dictionary of Accumulators

March 21, 2022 Sprenkle - CSCI111 6

if key not in dictionary :
dictionary[key] = 1

else:
count = dictionary[key] + 1
dictionary[key] = count

if key not in dictionary :
dictionary[key] = 1

else:
dictionary[key] += 1

6

4

ABSTRACTIONS

March 21, 2022 Sprenkle - CSCI111 7

7

Abstractions
• Provide ways to think about program and its data

ØGet the jist without the details
• Examples we’ve seen

ØFunctions and methods
• Perform some operation but we don’t need to know how they’re

implemented
ØDictionaries

• Know they map keys to values
• Don’t need to know how the keys are organized/stored in the

computer’s memory
Ø Just about everything we do in this class…

March 21, 2022 Sprenkle - CSCI111 8

encryptFile(filename, key)

8

5

Classes and Objects
•Provide an abstraction for how to organize and

reason about data
•Example: GraphWin class

ØHad attributes (i.e., data or state) background color,
width, height, and title

ØEach GraphWin object had these attributes
•Each GraphWin object had its own values for these

attributes
ØUsed methods (API) to modify the object’s state, get

information about attributes
March 21, 2022 Sprenkle - CSCI111 9

9

Defining Our Own Classes
•Often, we want to represent data or information

that we do not have a way to represent using
built-in types or libraries

•Classes provide way to organize and manipulate
data
ØOrganize: data structures used
•E.g., ints, lists, dictionaries, other objects, etc.

ØManipulate: methods
March 21, 2022 Sprenkle - CSCI111 10

10

6

What is a Class?
•Defines a new data type
•Defines the class’s attributes (i.e., data or state)

and methods
ØMethods are like functions within a class and are the

class’s API

March 21, 2022 Sprenkle - CSCI111 11

Object o of
type

Classname

Internal data
hidden from

others

Other objects
manipulate using

methods

Object o is an instance of Classname

11

Defining a Card Class
•Create a class that represents a playing card
ØHow can we represent a playing card?
ØWhat information do we need to represent a playing

card?

March 21, 2022 Sprenkle - CSCI111 12

12

7

Representing a Card object
•Every card has two attributes:
ØSuit (one of “hearts”, “diamonds”, “clubs”, “spades”)
ØRank
•2-10: numbered cards
•11: Jack
•12: Queen
•13: King
•14: Ace

March 21, 2022 Sprenkle - CSCI111 13

13

Defining a New Class
•Syntax:

March 21, 2022 Sprenkle - CSCI111 14

class ClassName:
<method definitions>

Typically starts with
a capital letterKeyword

14

8

Card Class (Incomplete)

March 21, 2022 Sprenkle - CSCI111 15

class Card:
""" A class to represent a standard playing card.
The ranks are ints: 2-10 for numbered cards, 11=Jack,
12=Queen, 13=King, 14=Ace.
The suits are strings: 'clubs', 'spades', 'hearts’,
'diamonds’.""”

def __init__(self, rank, suit):
"""Constructor for class Card takes int rank and

string suit."""
self._rank = rank
self._suit = suit

def getRank(self):
"Returns the card’s rank."
return self._rank

def getSuit(self):
"Returns the card’s suit."
return self._suit

Method Doc String

card.py

M
et

ho
ds

Class Doc String

15

Card Class (Incomplete)

March 21, 2022 Sprenkle - CSCI111 16

class Card:
""" A class to represent a standard playing card.
The ranks are ints: 2-10 for numbered cards, 11=Jack,
12=Queen, 13=King, 14=Ace.
The suits are strings: 'clubs', 'spades', 'hearts’,
'diamonds’.""”

def __init__(self, rank, suit):
"""Constructor for class Card takes int rank and

string suit."""
self._rank = rank
self._suit = suit

def getRank(self):
"Returns the card’s rank."
return self._rank

def getSuit(self):
"Returns the card’s suit."
return self._suit card.py

M
et

ho
ds

Methods are like functions
defined in a class

Method Doc String

Class Doc String

16

9

Defining the Constructor: __init__
•__init__method is like the constructor
•In constructor, define instance variables

ØData contained in every object
ØAlso called attributes or fields

•Constructor never returns anything

March 21, 2022 Sprenkle - CSCI111 17

def __init__(self, rank, suit):
"""Constructor for class Card takes int rank

and string suit."""
self._rank = rank
self._suit = suit

First parameter of every method is self
- reference to the object that method acts on

Instance
variables Convention: named with _

17

Review
•How do we call/use the constructor for a class?

March 21, 2022 Sprenkle - CSCI111 18

18

10

Using the Constructor

•As defined above, constructor is called using
Card(<rank>,<suit>)
ØDo not pass anything for the self parameter
ØPython automatically passes the
self parameter for us

March 21, 2022 Sprenkle - CSCI111 19

Object card
of type Card

_rank = ?
_suit = ?

def __init__(self, rank, suit):

19

Using the Constructor
•As defined, constructor is called using
Card(<rank>,<suit>)
ØDo not pass anything for the self parameter
ØPython automatically passes the self parameter for us

•Example:
Øcard = Card(2, "hearts")
ØCreates a 2 of Hearts card
ØPython passes card as self for us
Øcard is an instance of the Card class

March 21, 2022 Sprenkle - CSCI111 20

def __init__(self,
rank, suit):

Object card
of type Card

_rank = 2
_suit = "hearts"

20

11

Review
•How do we call a method on an object?

March 21, 2022 Sprenkle - CSCI111 21

21

Accessor Methods
•To get information about the object

•Scenario: previously
created object using
card = Card(…, …)
these methods would get called as card.getRank()
and card.getSuit()
ØPython plugs card in for self

March 21, 2022 Sprenkle - CSCI111 22

def getRank(self):
"Returns the card's rank."
return self._rank

def getSuit(self):
"Returns the card's suit."
return self._suit

• Must take self parameter
• Return data/information

22

12

Testing Accessor Methods
•Repeat:

1. Create an object
2. Call the accessor method and confirm it returns

what is expected

March 21, 2022 Sprenkle - CSCI111 23

c1 = Card(14, "spades")

test the getSuit() method and constructor
test.testEqual(c1.getSuit(), "spades")

test the getRank() method and constructor
test.testEqual(c1.getRank(), 14)

23

Another Special Method: __str__
• Returns a string that describes

the object
• Whenever you print an object,

Python checks if the object’s
__str__method is defined
Ø Prints result of calling __str__

method
• str(<object>) also calls
__str__ method

March 21, 2022 Sprenkle - CSCI111 24

def __str__(self):
"""Returns a string
representing the card as
'rank of suit'."""
result = ""
if self._rank == 11:

result += "Jack"
elif self._rank == 12:

result += "Queen"
elif self._rank == 13:

result += "King"
elif self._rank == 14:

result += "Ace"
else:

result += str(self._rank)
result += " of " + self._suit
return result

24

13

Using the Card Class

March 21, 2022 Sprenkle - CSCI111 25

def main():
c1 = Card(14, "spades")
print(c1)
c2 = Card(2, "hearts")
print(c2)

Invokes the
__str__ method

Displays:

Ace of spades
2 of hearts

Object c1 of
type Card

_rank = 14
_suit = "spades"

Object c2 of
type Card

_rank = 2
_suit = "hearts"

card.py

25

Testing __str__ Method
•Repeat

1. Create an object
2. Call the method and confirm it returns what is

expected

March 21, 2022 Sprenkle - CSCI111 26

c1 = Card(14, "spades")

test.testEqual(str(c1), "Ace of spades")

Recall: str(…) automatically calls __str__ method

card.py

26

14

Example: Card Color
• Problem: Add a method to the Card class called getCardColor

that returns the card’s suit’s color (“red” or “black”)
• (Partial) procedure for defining a method (similar to functions)

Ø What is the input to the method?
Ø What is the output from the method?
Ø (Wait on defining the body of the method)

• How do we call the method?
• How can we test the method using test.testEqual function?

Ø Provide some test cases

March 21, 2022 Sprenkle - CSCI111 27card2.py

27

Example: Card Color
• Problem: Add a method to the Card class called getCardColor

that returns the card’s suit’s color (“red” or “black”)

• Procedure for defining a method (similar to functions)
Ø What is the input to the method?
Ø What is the output from the method?
Ø What is the method signature/header?
Ø What does the method do?

March 21, 2022 Sprenkle - CSCI111 28card2.py

28

15

Looking Ahead
•Prelab 9 for tomorrow
ØEngage in the object-oriented reading

•Lab 9 due Friday
•Exam Friday
ØDefining classes will not be on exam
ØDiscussion on Wednesday

March 21, 2022 Sprenkle - CSCI111 29

29

