
1

Objectives
•Introduction to Recursion
•Comparing Programming Languages

Apr 6, 2022 Sprenkle - CSCI111 1

1

Review: Extensions to Solution

Apr 6, 2022 Sprenkle - CSCI111 2

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

Goal: find a Person with a certain name
Consider what happens when searchlist
is a list of Persons, key is a str
representing the name

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id:“3”
“Brie”

Person
Id: “1”
“Gal”

Person
Id:“2”

“Henry”

Person
Id:“5”

“Samuel”

Good capstone problem:
Brings together
• Algorithms
• Classes/Objects
• Lists
• Methods
• While loops
• Strings

2

2

Solving Binary Search
•Our solution was an iterative solution
•We could write it as a recursive solution
•Recursion: method of solving problems
ØBreak a problem down into smaller subproblems of

the same problem until problem is small enough that
it can be solved trivially

Apr 6, 2022 Sprenkle - CSCI111 3

3

Toward Recursive Binary Search

Apr 6, 2022 Sprenkle - CSCI111 4

def search(searchlist, key):
mid = len(searchlist)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
return search(searchlist[mid+1:], key)

else:
look in lower half
return search(searchlist[:mid], key)

4

3

Toward Recursive Binary Search

Apr 6, 2022 Sprenkle - CSCI111 5

def search(searchlist, key):
mid = len(searchlist)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
return search(searchlist[mid+1:], key)

else:
look in lower half
return search(searchlist[:mid], key)

The function calls itself on a list
that is ~half the size of the original!

Recursion: Breaking problem into smaller subproblems of
the same problem … into trivial solution

5

Toward Recursive Binary Search

Apr 6, 2022 Sprenkle - CSCI111 6

def search(searchlist, key):
mid = len(searchlist)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
return search(searchlist[mid+1:], key)

else:
look in lower half
return search(searchlist[:mid], key)

The function calls itself on a list
that is ~half the size of the original!

When does the function stop?
What is the trivial solution we’re trying to break down to?

6

4

Toward Recursive Binary Search

Apr 6, 2022 Sprenkle - CSCI111 7

def search(searchlist, key):
mid = len(searchlist)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
return search(searchlist[mid+1:], key)

else:
look in lower half
return search(searchlist[:mid], key)

But, what if the element isn’t in the list?
When will we know that?

Stops when we find the element

7

Recursive Binary Search

Apr 6, 2022 Sprenkle - CSCI111 8

def search(searchlist, key):
mid = len(searchlist)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
return search(searchlist[mid+1:], key)

else:
look in lower half
return search(searchlist[:mid], key)

But, what if the element isn’t in the list?
When will we know that?

Stops when we find the element

8

5

Recursive Binary Search

Apr 6, 2022 Sprenkle - CSCI111 9

def search(searchlist, key):
if len(searchlist) == 0:

return -1
mid = len(searchlist)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
return search(searchlist[mid+1:], key)

else:
look in lower half
return search(searchlist[:mid], key)

Base case: We know the key
is not in our list

9

Recursive Binary Search Conclusions

Apr 6, 2022 Sprenkle - CSCI111 10

def search(searchlist, key):
if len(searchlist) == 0:

return -1
mid = len(searchlist)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
return search(searchlist[mid+1:], key)

else:
look in lower half
return search(searchlist[:mid], key)

• Broke problem into smaller problems
• Smallest problem is easy to solve

• BUT, this is not an efficient solution
because creates multiple lists
• (Can write a recursive solution that

doesn’t create multiple lists but would
need to change the function signature)

10

6

Recursion Summary
•Recursion: method of solving problems

ØBreak a problem down into smaller subproblems until
problem is small enough that it can be solved trivially

•Binary Search:
ØBreak problem to ~half the size of original problem
ØBase cases: when the middle element is what you’re

looking for; when there are no elements in your list
•Any recursive problem can be solved iteratively

ØSome problems lend themselves better to recursive
solutions

Apr 6, 2022 Sprenkle - CSCI111 11

11

COMPARING PROGRAMMING LANGUAGES

Apr 6, 2022 Sprenkle - CSCI111 12

12

7

Applying What You Know To Other Languages
•At the beginning of the semester, some of you

wondered
Ø“Why the Python programming language?”
Ø“Will I be able to read/write programs in other

programming languages?”

•We’ll answer the first question by showing that
you can do the second

Apr 6, 2022 Sprenkle - CSCI111 13

13

Applying What You Know To Other Languages
•Syntax: symbols used
•Semantics: what the symbols mean

Apr 6, 2022 Sprenkle - CSCI111 14

14

8

What is the Python 3 Program Doing?

Apr 6, 2022 Sprenkle - CSCI111 15

15

What is the Python3 Program Doing?
•Getting a line of input from “standard in” (from

the user)
•Splitting the input into integers
•Calculating the result of a formula
•Deciding if a student is admitted, based on the

result of the formula
•Displaying the result

Apr 6, 2022 Sprenkle - CSCI111 16

16

9

Admissions Problem
•Binary University decides to admit students

based on a formula that weighs various factors
ØScores of 70 or better are admitted

•Input: single line, 4 integers, in order below

Apr 6, 2022 Sprenkle - CSCI111 17

Category Range Weight Factor
(Multiplier)

AP Courses 0-10 3
Intangibles 1-10 2

High School GPA 0 - 100 0.25
SAT score 400-1600 .02

17

Example Input/Expected Output

Apr 6, 2022 Sprenkle - CSCI111 18

Input Expected Output

0 1 0 300 DENY

6 10 99 1590 ADMIT

0 7 82 1500 ADMIT

2 5 80 990 DENY

5 5 92 1200 ADMIT

2 5 100 1300 ADMIT

18

10

What is the Python3 Program Doing?
•Getting a line of input from “standard in” (from

the user)
•Splitting the input into integers
•Calculating the result of a formula
•Deciding if a student is admitted, based on the

result of the formula
•Displaying the result

Apr 6, 2022 Sprenkle - CSCI111 19Identify these pieces in the other programs

19

Comparing Programming Languages
•How is the syntax/semantics of these languages

different from Python?

•What is easier or harder to do in these other
programming languages than in Python?

Apr 6, 2022 Sprenkle - CSCI111 20

20

11

Comparing Programming Languages
Benefits of Python
• Simpler syntax (e.g., fewer {}

and ())
• Can cover some content with

less overhead

Drawbacks
• Data types aren’t explicit (static)

Ø Can be harder for you to
remember and keep straight

• Not compiled explicitly
beforehand
Ø Keep executing to find all the

syntax bugs
Ø Doesn’t check: “you’re passing a

file instead of a string”
• Allows you to do some things

that won’t work in other
programming languages

Apr 6, 2022 Sprenkle - CSCI111 21

21

Bash
•Scripting language
ØCan call Unix commands

•Example program:
ØcreatePrintableLab

Apr 6, 2022 Sprenkle - CSCI111 22

22

12

Tiobe Index

Apr 6, 2022 Sprenkle - CSCI111 23

based on the number of skilled engineers world-wide,
courses and third party vendors

http://www.tiobe.com/tiobe_index

CSCI209, 335
CSCI210, 320

CSCI111, 112

CSCI335

CSCI335, 317

23

Final Exam
•Final will be in Canvas
ØTake anytime during finals (Saturday a.m. – Friday at

noon)
ØDue end of exam period - Friday at noon

•Prep document on schedule
ØSimilar format to previous exams but in Canvas
ØMore on Friday

Apr 6, 2022 Sprenkle - CSCI111 24

24

13

Looking Ahead
•Thursday: BI write up due
•Friday:

ØLab 11 due
ØReview computer science

•Where we’ve been and where you can go
ØBring your exam questions

•Practice
•All (late) lab work and extra credit articles must be

submitted by MONDAY 11:59 p.m.
Apr 6, 2022 Sprenkle - CSCI111 25

25

