
1

Lab 3
•Review

ØLab 2
ØLoops
ØFunctions

Feb 1, 2022 Sprenkle - CSCI111 1

1

Lab 2 Feedback
• Getting a little tougher in grading
• Paying more attention to style (e.g., variable names),

efficiency, readability, good output
• Need high-level descriptions in comments
• More strict on adhering to problem specification

ØFollow instructions
• Demonstrate program more than once if gets input from

user or outcome changes when run again
ØFind errors before I do!

Feb 1, 2022 Sprenkle - CSCI111 2

2

2

Testing Discussion
•Consider what inputs could allow you to see different

behaviors
ØExample: If only one person splitting the bill
ØWhat are good test cases for the greatest hits problem?

•Start with at least one test case that is easy to validate

Feb 1, 2022 Sprenkle - CSCI111 3

3

Starting to Know Multiple Ways to Do Same Thing

•Favor the solution with least “conceptual complexity”
ØApproximation: requires fewer characters in a line of code

Feb 1, 2022 Sprenkle - CSCI111 4

print("The tip is ", total_bill*(percent_tip/100), " dollars")
print("The total cost is ", total_bill + (total_bill*(percent_tip/100)),
" dollars")
print("The total cost per person is ", (total_bill+
(total_bill*(percent_tip/100)))/number_of_people, " dollars")

You should be able to understand this code, relatively easily,
but it takes time to parse it and know what is happening.

4

3

Starting to Know Multiple Ways to Do Same Thing

•Favor the solution with least “conceptual complexity”
ØApproximation: requires fewer characters in a line of code

Feb 1, 2022 Sprenkle - CSCI111 5

print("The tip is ", total_bill*(percent_tip/100), " dollars")
print("The total cost is ", total_bill +
(total_bill*(percent_tip/100)), " dollars")
print("The total cost per person is ", (total_bill+
(total_bill*(percent_tip/100)))/number_of_people, " dollars")

cost_tip=total_bill*(percent_tip/100)
print("The tip is", cost_tip, "dollars")

cost_total=total_bill+cost_tip
print("The total cost is", cost_total, "dollars")

cost_per_person=cost_total/number_people
print("The cost per person is", cost_per_person, "dollars")

More lines of code but
each line is simpler

5

Starting to Know Multiple Ways to Do Same Thing

•Favor the solution with least “conceptual complexity”
ØApproximation: requires fewer characters in a line of code

Feb 1, 2022 Sprenkle - CSCI111 6

print("The tip is ", total_bill*(percent_tip/100), " dollars")
print("The total cost is ", total_bill +
(total_bill*(percent_tip/100)), " dollars")
print("The total cost per person is ", (total_bill+
(total_bill*(percent_tip/100)))/number_of_people, " dollars")

cost_tip=total_bill*(percent_tip/100)
cost_total=total_bill+cost_tip
cost_per_person=cost_total/number_people

print("The tip is", cost_tip, "dollars")
print("The total cost is", cost_total, "dollars")
print("The cost per person is", cost_per_person, "dollars")

Even better because it
groups computation
and printing together

6

4

Text’s setText("text") method
• Instead of creating multiple Text objects, just use
setText mutator method.

•For example:

Feb 1, 2022 Sprenkle - CSCI111 7

text = Text(anchorPoint, "original directions")
…
text.setText("new directions")

7

Variable Naming
•Consider which variable name is better:

Feb 1, 2022 Sprenkle - CSCI111 8

circle = Circle(midPoint, 50)

bodyBottom = Circle(midPoint, 50)

8

5

Debugging Practices
•Larger, more complex programs à harder to debug
•Debugging practices

ØTrace through the program as if you are the computer
•Similar to some exam problems

ØUse print statements to display variables’ values
ØOr, use Python visualizer to show how variables’ values

change

Feb 1, 2022 Sprenkle - CSCI111 9

9

Repeating Code
•How do we make code repeat?
•How do we use the range function?
•What questions should we ask when solving a problem

that requires repetition?
ØThese questions help guide our solution

•What is the accumulator design pattern?
•How do we indicate that a variable will not change

during the lifetime of the program?
Feb 1, 2022 Sprenkle - CSCI111 10

10

6

Review: Accumulator Design Pattern
1. Initialize accumulator variable
2. Loop until done

ØUpdate the value of the accumulator

3.Display result

Feb 1, 2022 Sprenkle - CSCI111 11

Recall our example of adding up the user inputs…

11

Review: Designing for Change: Constants
•Special variables whose values are defined once and

never changed
ØBy convention, not enforced by interpreter

•By convention
ØA constant’s name is all caps
ØTypically defined at top of program à easy to find, change

•Examples:
ØNUMBER_OF_INPUTS = 5

Feb 1, 2022 Sprenkle - CSCI111 12

12

7

Review
•What are some examples of built-in functions?
•How can we access functions from a module?
•How do we call functions?

ØBuilt-in functions?
ØFunctions from modules?

Feb 1, 2022 Sprenkle - CSCI111 13

13

Review: More Examples of
Built-in Functions

Feb 1, 2022 Sprenkle - CSCI111 14

Interpreter

Function Signature Description
round(x[,n]) Return the float x rounded to n

digits after the decimal point
If no n, round to nearest int

abs(x) Returns the absolute value of x

type(x) Return the type of x

pow(x, y) Returns xy

14

8

Animation
•Use combinations of the method move and the

function sleep
ØNeed to sleep so that humans can see the graphics moving
ØOtherwise, computer processes the moves too fast!

•sleep is part of the time module
Øtakes a float representing seconds and pauses for that

amount of time

Jan 31, 2022 Sprenkle - CSCI111 15animate.py

15

Animate Circle Shift!
•Animate moving a circle to the position clicked by the

user
ØPreviously, moved in one fell swoop

ØTo animate
•Break the movement into chunks
•Repeatedly, move one chunk, sleep

•Bonus: do the user clicks, animation 3 times
Jan 31, 2022 Sprenkle - CSCI111 16circleShiftAnim.py

dx = newX - circle.getCenter().getX()
dy = newY - circle.getCenter().getY()

circle.move(dx, dy)

16

9

Computational Thinking
• Learning how to think

ØLearning how to learn
ØLearning how to solve problems

• Process
ØPractice!

• Review slides and examples after class
Ø Run them in Python visualizer

ØFinding answers
• Examples, handouts, textbook, directions, links in directions, previous

labs, ...
ØAsking questions

• We talk you through the process
Feb 1, 2022 Sprenkle - CSCI111 17

Drilling good practice early on with
smaller problems

so that you are well-poised
to handle bigger problems!

17

Lab 3 Overview
•Practice Python programming

ØLoops
ØConstants
ØFunctions
ØAnimation with Graphics API

Feb 1, 2022 Sprenkle - CSCI111 18

18

