Contents
- ./card.py
- ./linear_and_binary_search.py
- ./linear_search.py
- ./test.py
./card.py 1/4
[top][prev][next]
import test
class Card:
"""
A class to represent a standard playing card. The ranks are ints:
2-10 for numbered cards, 11=Jack, 12=Queen, 13=King, 14=Ace.
The suits are strings: 'clubs', 'spades', 'hearts', 'diamonds'.
"""
def __init__(self, rank, suit):
"Constructs a new Card object with the given rank (an int) and suit (a string)."
self._rank = rank
self._suit = suit
def __str__(self):
"Returns a string describing the card as 'rank of suit'."
result = ""
if self._rank == 11:
result += "Jack"
elif self._rank == 12:
result += "Queen"
elif self._rank == 13:
result += "King"
elif self._rank == 14:
result += "Ace"
else:
result += str(self._rank)
result += " of " + self._suit
return result
def getRank(self):
"Returns rank."
return self._rank
def getSuit(self):
"Returns suit."
return self._suit
def getRummyValue(self):
"Returns the value of the card in the game of Rummy."
# using the helper method may not be the best way
# to implement this, but want to show what we can do.
if self._isFaceCard(): # handles face cards
return 10
elif self._rank == 14: # handles Ace
return 15
elif self._rank == 10: # handles 10
return 10
else:
return 5
def __eq__(self, other):
"""Returns True if this object and other are equivalent
based on their rank and suit"""
# verify that self and other are the same type
if type(self) != type(other):
return False
# do comparison
return self._rank == other._rank and self._suit == other._suit
def __lt__(self, other):
""" Compares Card objects by their rank.
Returns True if this Card's rank is smaller than the
other Card's rank
"""
# verify that self and other are the same type
if type(self) != type(other):
return False
# do comparison
return self._rank < other._rank
def _isFaceCard(self):
"Returns True iff the card is a face card."
if self._rank > 10 and self._rank < 14:
return True
return False
def main():
c1 = Card(14, "spades")
print(c1)
c2 = Card(13, "hearts")
print(c2)
c3 = Card(2, "diamonds")
print(c3)
# test getRummyValue
test.testEqual( c1.getRummyValue(), 15 )
test.testEqual( c2.getRummyValue(), 10 )
test.testEqual( c3.getRummyValue(), 5 )
anotherAceOfSpades = Card(14, "spades")
# test equals and less than
test.testEqual( c1 == c2, False)
test.testEqual( c1 == "Ace of spades", False)
test.testEqual( c1 == anotherAceOfSpades, True)
test.testEqual( c1 < c2, False)
test.testEqual( c2 < c1, True)
test.testEqual( c1 < anotherAceOfSpades, False)
test.testEqual( c1 > anotherAceOfSpades, False)
testCases = [ c1, c2, c3]
print("\nTested cards in sorted order:")
testCases.sort()
for card in testCases:
print(card)
test.testEqual( testCases, [ c3, c2, c1] )
# Since I am probably going to import this script into another script,
# I only want to call main() when it's *not* imported
if __name__ == '__main__':
main()
./linear_and_binary_search.py 2/4
[top][prev][next]
# Demonstrate implementations of the linear and binary search
# techniques.
# Sara Sprenkle
# represents that binarySearch did not find the key
NOT_FOUND=-1
def main():
integers = range(1,20,2)
print("The list to search: ", integers)
print()
findMeList = [1, 4, 15, 16, 17]
for key in findMeList:
print("Search for", key)
print("Linear: Found?", linearSearch(integers, key))
# binarySearch returns the position the number was found, or -1 if it was
# not found. Translate the result from binarySearch to a True or False
pos = binarySearch(integers, key)
binFound = pos != NOT_FOUND
print("Binary: Found?", binFound)
print()
def linearSearch(searchlist, key):
"Returns true iff key is in the list of integers searchlist"
for elem in searchlist:
if elem == key:
return True
return False
def binarySearch(searchlist, key):
""" Returns the position where key (an int) is found in the list of sorted
integers searchlist or -1 if key is not in the list. """
low = 0
high = len(searchlist)-1
while low <= high:
mid = (low+high)//2
valueAtMid = searchlist[mid]
if valueAtMid == key:
return mid
if valueAtMid < key: # search upper half
low = mid+1
else: # search lower half
high = mid-1
return NOT_FOUND
main()
./linear_search.py 3/4
[top][prev][next]
# Demonstrate implementation of the linear search technique.
# Sara Sprenkle
def main():
integers = range(1, 20, 2)
print("The list we are searching: ", integers)
print()
findMeList = [1, 4, 15, 16, 17]
for key in findMeList:
print("Search for", key)
print("Linear: Found?", linearSearch(integers, key))
print()
def linearSearch(searchlist, key):
for elem in searchlist:
if elem == key:
return True
return False
main()
./test.py 4/4
[top][prev][next]
# From How to Think Like a Computer Scientist textbook
def testEqual(actual,expected,places=5):
'''
Does the actual value equal the expected value?
For floats, places indicates how many places, right of the decimal, must be correct
'''
if isinstance(expected,float):
if abs(actual-expected) < 10**(-places):
print('\tPass')
return True
else:
if actual == expected:
print('\tPass')
return True
print('\tTest Failed: expected {} but got {}'.format(expected,actual))
return False
Generated by GNU Enscript 1.6.5.90.