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Objectives
•Review algorithms
• Introduction to Programming Language
•Programming in Python

ØData types
ØExpressions
ØVariables

•Broader Issue: Algorithms – postponed to next Friday
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Review
•What is an algorithm?
•What did we learn about algorithms/working with a 

computer from the peanut butter and jelly exercise?
•Pick a TV show/movie: what is its algorithm?
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“Really?” with Professor Sprenkle
• In TV Guide, showrunners of Once Upon a Time were 

asked, “Give us an algorithm for your show.”
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“Really?” with Professor Sprenkle
• In TV Guide, showrunners of Once Upon a Time were 

asked, “Give us an algorithm for your show.”
ØExample (for first season): 1 part Snow White + 1 part Lost + 

.5 Alias

•They said, “We don’t understand math.  That’s why we 
became writers.”
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Review: Discussion of PB&J
• The computer: a blessing and a curse

ØRecognize and meet the challenge!
• Be unambiguous, descriptive

ØMust be clear for the computer to understand
Ø“Do what I meant!  Not what I said!”

• Motivates programming languages
• Creating/Implementing an algorithm

ØBreak down pieces
ØTry it out
ØRevise
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Review: Discussion of PB&J
• Steps need to be done in a particular order
• Be prepared for special cases

ØAny other special cases we didn’t discuss?
• Aren’t necessarily spares in real life

ØNeed to write correct algorithms!
• Reusing similar techniques

ØDo the same thing with a little twist
• Looping

ØFor repeating the same action
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Other Lessons To Remember
•A cowboy’s wisdom: Good judgment comes from 

experience
ØHow can you get experience?
ØBad judgment works every time

•Program errors can have bad effects
ØPrevent the bad effects (that’s the thinking part)--especially 

before you turn in your assignment!
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Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques
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An overview for 
the semester!

8



5

Computational Problem Solving 101
•Computational Problem:

A problem that can be solved by logic

•To solve the problem:
ØCreate a model of the problem
ØDesign an algorithm for solving the problem using the 

model
ØWrite a program that implements the algorithm
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Why Do We Need Programming Languages?
•Computers can’t understand English

ØToo ambiguous
•Humans can’t easily write machine code
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Problem Statement (English)

Machine code/Central Processing Unit (CPU)
000000 00001 00010 00110 00000 100000

Live Jazz!
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Why Do We Need Programming Languages?
•Computers can’t understand English

ØToo ambiguous
•Humans can’t easily write machine code
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Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)
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Why Do We Need Programming Languages?
•Computers can’t understand English

ØToo ambiguous
•Humans can’t easily write machine code
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Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

Programmer (YOU!) translates 
from problem to algorithm 
(solution) to program

Python interpreter translates
into bytecode

12



7

Why Do We Need Programming Languages?
•Computers can’t understand English

ØToo ambiguous
•Humans can’t easily write machine code
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Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)
Python interpreter executes 
the bytecode in a 
“virtual machine”

Programmer (YOU!) translates 
from problem to algorithm 
(solution) to program

Python interpreter translates 
into bytecode
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Programming Languages
• Programming language:

ØSpecific rules for what is and isn’t allowed
ØMust be exact
ØComputer carries out commands as they are given

• Syntax: the symbols given
• Semantics: what it means
• Example:

Ø III * IV means 3 × 4 which evaluates to 12
Ø cp src dest means copy the file named src to dest

• Programming languages are unambiguous
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Another Syntax and Semantics Example
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What is the syntax?  What is the semantics?
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Python Is …
•A programming language

ØThe most popular programming language, according to the 
Tiobe index

•An interpreter (which is a program) that understands 
and executes Python code
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http://www.tiobe.com/tiobe-index/
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Python
•A common interpreted programming language

ØRuns on many operating systems
•First released by Guido van Rossum in 1991
•Named after Monty Python’s Flying Circus
•Minimalist syntax, emphasizes readability
•Flexible, fast, useful language
•Used by scientists, engineers, systems programmers
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Python Interpreter
1. Validates Python programming language expression(s)

Ø Enforces Python syntax
Ø Reports syntax errors

2. Executes expression(s)
Ø Runtime errors 

(e.g., divide by 0)
Ø Semantic errors 

(not what you meant)

Jan 13, 2023 Sprenkle - CSCI111 18

Python
Interpreter

Expression

Output Executable
bytecode

Could be errors

Valid?
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Two Modes to Execute Python Code
• Interactive: using the interpreter

ØTry out Python expressions

•Batch: execute scripts (i.e., files containing Python 
code)
ØWhat we’ll usually write
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Interactive Mode
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Run by typing “python3” in terminal

Type in the expressionPython 
displays the 
result

Error Message:
We’ll talk more later about 
why this is an error

print: Special function to display output 
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Batch Mode
1. Programmer types a program/script into a text editor
2. An interpreter turns each expression into bytecode and 

then executes each expression
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Python
Interpreter

Program
text file

(e.g., program.py)  

Output

Text Editor
(e.g., emacs or IDLE)

Executable
bytecode

One “line” 
at a time

If errors in program:
• Get feedback about which line caused the 

problem
• Interpreter stops validating/executing lines

validates
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Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques
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Primitive Data Types
•Primitive data types represent data
•Python provides some basic or primitive data types
•Broadly, the categories of primitive types are

ØNumeric
ØBoolean
ØStrings
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Numeric Primitive Types
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Python 
Data Type

Description Examples

int Plain integers 
(32-bit precision)

-214, -2, 0, 2, 100

float Real numbers
.001, -1.234, 1000.1, 
0.00, 2.45

complex
Imaginary numbers 
(have real and 
imaginary part)

1j * 1J à (-1+0j)
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How big (or small or precise) can we get?
• Computer cannot represent all values
• Problem: Computer has a finite capacity

ØThe computer only has so much memory that it can devote to 
one value.

ØEventually, reach a cutoff
• Limits size of value
• Limits precision of value
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Example: in Python interpreter, .1 + .1 + .1 yields 0.30000000000000004.
* In reality, computers represent data in binary.

0 0 0 0 0 3 .1 4 1 5 9 2 6 5

PI has more decimals, 
but we’re out of space! 
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Strings: str
• Indicated by double quotes " " or single quotes ' '
•Treat what is in the " " or ' ' literally

ØKnown as string literals
•Examples:

Ø"Hello, world!"
Ø'c'
Ø"That is Buddy's dog."
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Single quote must be 
inside double quotes*

*Exception later
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Booleans: bool
•2 values

ØTrue
ØFalse

•Much more on these later… 
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What is the value’s type?
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Value Type
52

-0.01
4+6j
"3.7"

4047583648
True

'false'
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What is the value’s type?
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Value Type
52 int

-0.01 float
4+6j complex
"3.7" str

4047583648 int
True boolean

'false' str
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Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques
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Introduction to Variables
•Variables save data/information

ØExample: first slice of bread or knife A
ØType of data the variable holds can be any of primitive data 

types as well as other data types we’ll learn about later

•Variables have names, called identifiers
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Variable Names/Identifiers
•A variable name (identifier) can be any one word that:

ØConsists of letters, numbers, or _
ØDoes not start with a number
ØIs not a Python reserved word
•Examples: for while def

•Python is case-sensitive:
Øchange isn’t the same as Change
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Variable Name Conventions
• Variables start with a lowercase letter
• Convention: Constants (values that won’t change) are all 

capitals
Ø(more on this later…)

• Example: Variable for the current year
ØcurrentYear
Øcurrent_year
ØCURRENT_YEAR
Øcurrentyear
Øcurrent year
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No spaces allowed

Harder to read

Naming doesn’t matter to computer,
matters to humans
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Importance of Variable Naming
•Helps you remember what the variable represents
•Easier for others to understand your program
•Examples:
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Info Represented Good Variable Name
A person’s first name firstName, first_name
Radius of a circle radius
If someone is employed or not isEmployed

34
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Review: Computational Problem Solving
•Computational Problem:

A problem that can be solved by logic

•To solve the problem:
ØCreate a model of the problem
ØDesign an algorithm for solving the problem using the 

model
ØWrite a program that implements the algorithm
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Modeling Information
• How would you model this information?
• What data type best represents the info?
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Info Represented Data Type Variable Name
A person’s salary

Sales tax
If item is taxable

Course name
Graduation Year

36
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Modeling Information
• How would you model this information?
• What data type best represents the info?
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Info Represented Data Type Variable Name
A person’s salary int or float salary

Sales tax float salesTax
If item is taxable bool isTaxable

Course name str course_name
Graduation Year int gradYear

Variable names are just suggestions,
Many other possible variable names
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Assignment Statements
•Variables can be given a value using =

ØSyntax: <variable> = <expression>
ØSemantics: <variable> is set to value of 
<expression>

•After a variable is set to a value, the variable is said to 
be initialized

•Examples:
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month = 1
impt_num = 4.5
monthName = 'January'

These are not equations!
Read “=” as “is set to”
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Variables: The Rules
•Only the variable(s) to left of the = 

in the current statement change
ØWe’ll only have one variable on the left

•Order of operations
1. Evaluate the expression on the right
2. Assign the variable on the left to the evaluated expression

• Initialize a variable before using it on the right-hand 
side (rhs) of a statement
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Assignment Statements

• Statements execute in order, from top to bottom
• Value of x does not change because of second assignment statement
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Computer
Memory

x = 5
y = x

https://pythontutor.com/visualize.html

40

https://pythontutor.com/visualize.html
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Assignment Statements
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Computer
Memory

x = 5
y = x

x

5

y 5Does a “lookup” 
in memory to 
find value of x

• Statements execute in order, from top to bottom
• Value of x does not change because of second assignment statement
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Literals
•Pieces of data that are not variables are called literals

ØWe’ve been using these a lot
•Examples:

Ø4
Ø3.2
Ø'q'
Ø"books"
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Numeric Arithmetic Operations
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Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder (“mod”)

** Exponentiation (power)
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Arithmetic & Assignment
• You can use the assignment operator (=) and arithmetic 

operators to do calculations
1. Calculate right hand side
2. Assign value to variable

• Remember your order of operations! (PEMDAS) 
• Examples:

x = 4+3*10
y = 3/2.0
z = x+y
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The right-hand sides are 
expressions, just like in math.
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Arithmetic & Assignment
•Examples:
x = 4+3*10
y = 3/2.0
z = x+y

•For last statement
Øneed to “lookup” values of x and y
Øcomputer remembers the result of the expression, not the 

expression itself
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Computer
Memory
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Arithmetic & Assignment
•Examples:
x = 4+3*10
y = 3/2.0
z = x+y

•For last statement
Øneed to “lookup” values of x and y
Øcomputer remembers the result of the expression, not the 

expression itself
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Computer
Memory

x

y 1.5
34

35.5
z

46
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NOT Math Class
•Need to write out all operations explicitly
ØIn math class, a (b+1) meant a*(b+1)
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Write this way in Python
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What are the values?
•After executing the following statements, what are the 

values of each variable?
Ør = 5
Øs = -1 + r
Øt = r + s
Øs = 2
Ør = -7 
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How can we confirm that we’re right?

48
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Parts of an Algorithm
èInput, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 13, 2023 Sprenkle - CSCI111 49

49

Printing Output
•print is a function

ØDisplays the result of expression(s) to the terminal
ØAutomatically adds a ‘\n’ (carriage return) after it’s printed
•Relevant when have multiple print statements

•print("Hello, class")
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string literal Syntax: a pair of double quotes
Semantics: represents text

50
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Printing Multiple Things
•print is a a function
•To display multiple things on the same line, separate 

them with commas
Øprint("Hello,", "class")
Øprint("x =", 5)
Øprint(x*y, "is the magic number")
Øprint(r, s, t)
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Syntax: , 
Semantics: display this too, separated by a 
space in the display
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Programming Building Blocks
•Each type of statement is a building block

ØInitialization/Assignment
•So far: Arithmetic

ØPrint

•We can combine them to create more 
complex programs
ØSolutions to problems
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print

Assign.

Assign.
Assign.
print
Assign.

print
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Bringing It All Together: 
A simple program or script
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# Demonstrates arithmetic operations and 
# assignment statements
# by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

Comments: human-readable descriptions.
Computer does not execute.

What does this 
program display?
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Bringing It All Together: 
A simple program or script
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# Demonstrates arithmetic operations and 
# assignment statements
# by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

If no print statements, the program 
would not display anything!
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Bringing It All Together: 
A simple program or script
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# Demonstrates arithmetic operations and 
# assignment statements
# by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

# alternative to the previous program
print("x * y =", x * y)

arith_and_assign2.py

Comments: human-readable descriptions.
Computer does not execute.

This print statement is slightly more complicated than previous example.
Goal: keep each statement simple so that it’s easier to find errors.
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Looking Ahead
•Textbook Pre Lab 1 assignment due before lab on 

Tuesday
ØCovers some things we haven’t yet covered in class; we’ll 

review on Tuesday
•Extra Credit Opportunity:

ØRead an article that relates to CS
ØSummarize it on the discussions under “Extra Credit”
•5 pts extra credit added to lab grade
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