
1

Objectives
•Review algorithms
• Introduction to Programming Language
•Programming in Python

ØData types
ØExpressions
ØVariables

•Broader Issue: Algorithms – postponed to next Friday

Jan 13, 2023 Sprenkle - CSCI111 1

1

Review
•What is an algorithm?
•What did we learn about algorithms/working with a

computer from the peanut butter and jelly exercise?
•Pick a TV show/movie: what is its algorithm?

Jan 13, 2023 Sprenkle - CSCI111 2

2

2

“Really?” with Professor Sprenkle
• In TV Guide, showrunners of Once Upon a Time were

asked, “Give us an algorithm for your show.”

Jan 13, 2023 Sprenkle - CSCI111 3

3

“Really?” with Professor Sprenkle
• In TV Guide, showrunners of Once Upon a Time were

asked, “Give us an algorithm for your show.”
ØExample (for first season): 1 part Snow White + 1 part Lost +

.5 Alias

•They said, “We don’t understand math. That’s why we
became writers.”

Jan 13, 2023 Sprenkle - CSCI111 4

4

3

Review: Discussion of PB&J
• The computer: a blessing and a curse

ØRecognize and meet the challenge!
• Be unambiguous, descriptive

ØMust be clear for the computer to understand
Ø“Do what I meant! Not what I said!”

• Motivates programming languages
• Creating/Implementing an algorithm

ØBreak down pieces
ØTry it out
ØRevise

Jan 13, 2023 Sprenkle - CSCI111 5

5

Review: Discussion of PB&J
• Steps need to be done in a particular order
• Be prepared for special cases

ØAny other special cases we didn’t discuss?
• Aren’t necessarily spares in real life

ØNeed to write correct algorithms!
• Reusing similar techniques

ØDo the same thing with a little twist
• Looping

ØFor repeating the same action
Jan 13, 2023 Sprenkle - CSCI111 6

6

4

Other Lessons To Remember
•A cowboy’s wisdom: Good judgment comes from

experience
ØHow can you get experience?
ØBad judgment works every time

•Program errors can have bad effects
ØPrevent the bad effects (that’s the thinking part)--especially

before you turn in your assignment!

Jan 13, 2023 Sprenkle - CSCI111 7

7

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 13, 2023 Sprenkle - CSCI111 8

An overview for
the semester!

8

5

Computational Problem Solving 101
•Computational Problem:

A problem that can be solved by logic

•To solve the problem:
ØCreate a model of the problem
ØDesign an algorithm for solving the problem using the

model
ØWrite a program that implements the algorithm

Jan 13, 2023 Sprenkle - CSCI111 9

9

Why Do We Need Programming Languages?
•Computers can’t understand English

ØToo ambiguous
•Humans can’t easily write machine code

Jan 13, 2023 Sprenkle - CSCI111 10

Problem Statement (English)

Machine code/Central Processing Unit (CPU)
000000 00001 00010 00110 00000 100000

Live Jazz!

10

6

Why Do We Need Programming Languages?
•Computers can’t understand English

ØToo ambiguous
•Humans can’t easily write machine code

Jan 13, 2023 Sprenkle - CSCI111 11

Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

11

Why Do We Need Programming Languages?
•Computers can’t understand English

ØToo ambiguous
•Humans can’t easily write machine code

Jan 13, 2023 Sprenkle - CSCI111 12

Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

Programmer (YOU!) translates
from problem to algorithm
(solution) to program

Python interpreter translates
into bytecode

12

7

Why Do We Need Programming Languages?
•Computers can’t understand English

ØToo ambiguous
•Humans can’t easily write machine code

Jan 13, 2023 Sprenkle - CSCI111 13

Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)
Python interpreter executes
the bytecode in a
“virtual machine”

Programmer (YOU!) translates
from problem to algorithm
(solution) to program

Python interpreter translates
into bytecode

13

Programming Languages
• Programming language:

ØSpecific rules for what is and isn’t allowed
ØMust be exact
ØComputer carries out commands as they are given

• Syntax: the symbols given
• Semantics: what it means
• Example:

Ø III * IV means 3 × 4 which evaluates to 12
Ø cp src dest means copy the file named src to dest

• Programming languages are unambiguous
Jan 13, 2023 Sprenkle - CSCI111 14

14

8

Another Syntax and Semantics Example

Jan 13, 2023 Sprenkle - CSCI111 15

What is the syntax? What is the semantics?

15

Python Is …
•A programming language

ØThe most popular programming language, according to the
Tiobe index

•An interpreter (which is a program) that understands
and executes Python code

Jan 13, 2023 Sprenkle - CSCI111 16

http://www.tiobe.com/tiobe-index/

16

9

Python
•A common interpreted programming language

ØRuns on many operating systems
•First released by Guido van Rossum in 1991
•Named after Monty Python’s Flying Circus
•Minimalist syntax, emphasizes readability
•Flexible, fast, useful language
•Used by scientists, engineers, systems programmers

Jan 13, 2023 Sprenkle - CSCI111 17

17

Python Interpreter
1. Validates Python programming language expression(s)

Ø Enforces Python syntax
Ø Reports syntax errors

2. Executes expression(s)
Ø Runtime errors

(e.g., divide by 0)
Ø Semantic errors

(not what you meant)

Jan 13, 2023 Sprenkle - CSCI111 18

Python
Interpreter

Expression

Output Executable
bytecode

Could be errors

Valid?

18

10

Two Modes to Execute Python Code
• Interactive: using the interpreter

ØTry out Python expressions

•Batch: execute scripts (i.e., files containing Python
code)
ØWhat we’ll usually write

Jan 13, 2023 Sprenkle - CSCI111 19

19

Interactive Mode

Jan 13, 2023 Sprenkle - CSCI111 20

Run by typing “python3” in terminal

Type in the expressionPython
displays the
result

Error Message:
We’ll talk more later about
why this is an error

print: Special function to display output

20

11

Batch Mode
1. Programmer types a program/script into a text editor
2. An interpreter turns each expression into bytecode and

then executes each expression

Jan 13, 2023 Sprenkle - CSCI111 21

Python
Interpreter

Program
text file

(e.g., program.py)

Output

Text Editor
(e.g., emacs or IDLE)

Executable
bytecode

One “line”
at a time

If errors in program:
• Get feedback about which line caused the

problem
• Interpreter stops validating/executing lines

validates

21

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 13, 2023 Sprenkle - CSCI111 22

22

12

Primitive Data Types
•Primitive data types represent data
•Python provides some basic or primitive data types
•Broadly, the categories of primitive types are

ØNumeric
ØBoolean
ØStrings

Jan 13, 2023 Sprenkle - CSCI111 23

23

Numeric Primitive Types

Jan 13, 2023 Sprenkle - CSCI111 24

Python
Data Type

Description Examples

int Plain integers
(32-bit precision)

-214, -2, 0, 2, 100

float Real numbers
.001, -1.234, 1000.1,
0.00, 2.45

complex
Imaginary numbers
(have real and
imaginary part)

1j * 1J à (-1+0j)

24

13

How big (or small or precise) can we get?
• Computer cannot represent all values
• Problem: Computer has a finite capacity

ØThe computer only has so much memory that it can devote to
one value.

ØEventually, reach a cutoff
• Limits size of value
• Limits precision of value

Jan 13, 2023 Sprenkle - CSCI111 25

Example: in Python interpreter, .1 + .1 + .1 yields 0.30000000000000004.
* In reality, computers represent data in binary.

0 0 0 0 0 3 .1 4 1 5 9 2 6 5

PI has more decimals,
but we’re out of space!

25

Strings: str
• Indicated by double quotes " " or single quotes ' '
•Treat what is in the " " or ' ' literally

ØKnown as string literals
•Examples:

Ø"Hello, world!"
Ø'c'
Ø"That is Buddy's dog."

Jan 13, 2023 Sprenkle - CSCI111 26

Single quote must be
inside double quotes*

*Exception later

26

14

Booleans: bool
•2 values

ØTrue
ØFalse

•Much more on these later…

Jan 13, 2023 Sprenkle - CSCI111 27

27

What is the value’s type?

Jan 13, 2023 Sprenkle - CSCI111 28

Value Type
52

-0.01
4+6j
"3.7"

4047583648
True

'false'

28

15

What is the value’s type?

Jan 13, 2023 Sprenkle - CSCI111 29

Value Type
52 int

-0.01 float
4+6j complex
"3.7" str

4047583648 int
True boolean

'false' str

29

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 13, 2023 Sprenkle - CSCI111 30

30

16

Introduction to Variables
•Variables save data/information

ØExample: first slice of bread or knife A
ØType of data the variable holds can be any of primitive data

types as well as other data types we’ll learn about later

•Variables have names, called identifiers

Jan 13, 2023 Sprenkle - CSCI111 31

31

Variable Names/Identifiers
•A variable name (identifier) can be any one word that:

ØConsists of letters, numbers, or _
ØDoes not start with a number
ØIs not a Python reserved word
•Examples: for while def

•Python is case-sensitive:
Øchange isn’t the same as Change

Jan 13, 2023 Sprenkle - CSCI111 32

32

17

Variable Name Conventions
• Variables start with a lowercase letter
• Convention: Constants (values that won’t change) are all

capitals
Ø(more on this later…)

• Example: Variable for the current year
ØcurrentYear
Øcurrent_year
ØCURRENT_YEAR
Øcurrentyear
Øcurrent year

Jan 13, 2023 Sprenkle - CSCI111 33

No spaces allowed

Harder to read

Naming doesn’t matter to computer,
matters to humans

33

Importance of Variable Naming
•Helps you remember what the variable represents
•Easier for others to understand your program
•Examples:

Jan 13, 2023 Sprenkle - CSCI111 34

Info Represented Good Variable Name
A person’s first name firstName, first_name
Radius of a circle radius
If someone is employed or not isEmployed

34

18

Review: Computational Problem Solving
•Computational Problem:

A problem that can be solved by logic

•To solve the problem:
ØCreate a model of the problem
ØDesign an algorithm for solving the problem using the

model
ØWrite a program that implements the algorithm

Jan 13, 2023 Sprenkle - CSCI111 35

35

Modeling Information
• How would you model this information?
• What data type best represents the info?

Jan 13, 2023 Sprenkle - CSCI111 36

Info Represented Data Type Variable Name
A person’s salary

Sales tax
If item is taxable

Course name
Graduation Year

36

19

Modeling Information
• How would you model this information?
• What data type best represents the info?

Jan 13, 2023 Sprenkle - CSCI111 37

Info Represented Data Type Variable Name
A person’s salary int or float salary

Sales tax float salesTax
If item is taxable bool isTaxable

Course name str course_name
Graduation Year int gradYear

Variable names are just suggestions,
Many other possible variable names

37

Assignment Statements
•Variables can be given a value using =

ØSyntax: <variable> = <expression>
ØSemantics: <variable> is set to value of
<expression>

•After a variable is set to a value, the variable is said to
be initialized

•Examples:

Jan 13, 2023 Sprenkle - CSCI111 38

month = 1
impt_num = 4.5
monthName = 'January'

These are not equations!
Read “=” as “is set to”

38

20

Variables: The Rules
•Only the variable(s) to left of the =

in the current statement change
ØWe’ll only have one variable on the left

•Order of operations
1. Evaluate the expression on the right
2. Assign the variable on the left to the evaluated expression

• Initialize a variable before using it on the right-hand
side (rhs) of a statement
Jan 13, 2023 Sprenkle - CSCI111 39

39

Assignment Statements

• Statements execute in order, from top to bottom
• Value of x does not change because of second assignment statement

Jan 13, 2023 Sprenkle - CSCI111 40

Computer
Memory

x = 5
y = x

https://pythontutor.com/visualize.html

40

https://pythontutor.com/visualize.html

21

Assignment Statements

Jan 13, 2023 Sprenkle - CSCI111 41

Computer
Memory

x = 5
y = x

x

5

y 5Does a “lookup”
in memory to
find value of x

• Statements execute in order, from top to bottom
• Value of x does not change because of second assignment statement

41

Literals
•Pieces of data that are not variables are called literals

ØWe’ve been using these a lot
•Examples:

Ø4
Ø3.2
Ø'q'
Ø"books"

Jan 13, 2023 Sprenkle - CSCI111 42

42

22

Numeric Arithmetic Operations

Jan 13, 2023 Sprenkle - CSCI111 43

Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder (“mod”)

** Exponentiation (power)

43

Arithmetic & Assignment
• You can use the assignment operator (=) and arithmetic

operators to do calculations
1. Calculate right hand side
2. Assign value to variable

• Remember your order of operations! (PEMDAS)
• Examples:

x = 4+3*10
y = 3/2.0
z = x+y

Jan 13, 2023 Sprenkle - CSCI111 44

The right-hand sides are
expressions, just like in math.

44

23

Arithmetic & Assignment
•Examples:
x = 4+3*10
y = 3/2.0
z = x+y

•For last statement
Øneed to “lookup” values of x and y
Øcomputer remembers the result of the expression, not the

expression itself
Jan 13, 2023 Sprenkle - CSCI111 45

Computer
Memory

45

Arithmetic & Assignment
•Examples:
x = 4+3*10
y = 3/2.0
z = x+y

•For last statement
Øneed to “lookup” values of x and y
Øcomputer remembers the result of the expression, not the

expression itself
Jan 13, 2023 Sprenkle - CSCI111 46

Computer
Memory

x

y 1.5
34

35.5
z

46

24

NOT Math Class
•Need to write out all operations explicitly
ØIn math class, a (b+1) meant a*(b+1)

Jan 13, 2023 Sprenkle - CSCI111 47

Write this way in Python

47

What are the values?
•After executing the following statements, what are the

values of each variable?
Ør = 5
Øs = -1 + r
Øt = r + s
Øs = 2
Ør = -7

Jan 13, 2023 Sprenkle - CSCI111 48

How can we confirm that we’re right?

48

25

Parts of an Algorithm
èInput, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 13, 2023 Sprenkle - CSCI111 49

49

Printing Output
•print is a function

ØDisplays the result of expression(s) to the terminal
ØAutomatically adds a ‘\n’ (carriage return) after it’s printed
•Relevant when have multiple print statements

•print("Hello, class")

Jan 13, 2023 Sprenkle - CSCI111 50

string literal Syntax: a pair of double quotes
Semantics: represents text

50

26

Printing Multiple Things
•print is a a function
•To display multiple things on the same line, separate

them with commas
Øprint("Hello,", "class")
Øprint("x =", 5)
Øprint(x*y, "is the magic number")
Øprint(r, s, t)

Jan 17, 2023 Sprenkle - CSCI111 51

Syntax: ,
Semantics: display this too, separated by a
space in the display

51

Programming Building Blocks
•Each type of statement is a building block

ØInitialization/Assignment
•So far: Arithmetic

ØPrint

•We can combine them to create more
complex programs
ØSolutions to problems

Jan 13, 2023 Sprenkle - CSCI111 52

print

Assign.

Assign.
Assign.
print
Assign.

print

52

27

Bringing It All Together:
A simple program or script

Jan 13, 2023 Sprenkle - CSCI111 53

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

Comments: human-readable descriptions.
Computer does not execute.

What does this
program display?

53

Bringing It All Together:
A simple program or script

Jan 13, 2023 Sprenkle - CSCI111 54

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

If no print statements, the program
would not display anything!

54

28

Bringing It All Together:
A simple program or script

Jan 13, 2023 Sprenkle - CSCI111 55

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

alternative to the previous program
print("x * y =", x * y)

arith_and_assign2.py

Comments: human-readable descriptions.
Computer does not execute.

This print statement is slightly more complicated than previous example.
Goal: keep each statement simple so that it’s easier to find errors.

55

Looking Ahead
•Textbook Pre Lab 1 assignment due before lab on

Tuesday
ØCovers some things we haven’t yet covered in class; we’ll

review on Tuesday
•Extra Credit Opportunity:

ØRead an article that relates to CS
ØSummarize it on the discussions under “Extra Credit”
•5 pts extra credit added to lab grade

Jan 13, 2023 Sprenkle - CSCI111 56

56

