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Objectives
• Introduction to Object-Oriented Programming
• Introduction to APIs
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Review
•How do we get input from a user?

ØGive example of getting input from a user, one where we 
want a string and one where we want a number

•What is the testing process?  What is our goal in 
testing?
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Review: Getting Input From User
•input is a function

ØFunction: A command to do something
•A “subroutine”

•Syntax:
Øinput(<string_prompt>)

•Semantics:
ØDisplay the prompt <string_prompt> in the terminal
ØRead in the user’s input and return it as a string/text
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Review: Getting Input From a User
•Save the result of calling input in a variable

ØEx:

• If you want the assigned variable to be of type int or 
float, we need to convert the result of calling input
ØEx:
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color = input("What is your favorite color? " )

height = eval(input("Enter the height: " ))
width = float(input("Enter the width: "))

Tradeoffs in which approach to use. For another time…

4



3

Review: Testing Process

• Test case: 
ØInput used to test the program
ØExpected output given that input

• Verify if output is what you expected
• Goal: create good test cases that will reveal if there is a 

problem in your code

Program

Verify output

OutputInput

Expected
Output

Test Case
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If output is not what you expect, debug!
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Programming Paradigm: Imperative
•Most modern programming languages are imperative
•Have data (numbers and strings in variables)
•Perform operations on data using operations, such as + 

(addition and concatenation)
•Data and operations are separate

•Add to imperative: object-oriented programming
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OBJECT-ORIENTED PROGRAMMING
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Object-Oriented Programming
•Program is a collection of objects
•Objects combine data and methods together
•Objects interact by invoking methods on other objects

ØMethods perform some operation on object
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Object-Oriented Programming
•Program is a collection of objects
•Objects combine data and methods together
•Objects interact by invoking methods on other objects

ØMethods perform some operation on object
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Object o of
type X

Hides 
internal data

o.method()

Optionally may return
something back
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Object-Oriented Programming
•We’ve been using objects--just didn’t call them objects
•For example: str is a data type (or class)

ØWe created objects of type (class) string
•animal = "cow"
•coursename = "csci111"
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Objects of 
type str

Variable 
names/

identifiers

"cow"

"csci111"

animal

courseName
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Example of OO Programming Abstraction
•Think of a smart phone– It's an object
•What can you do to a phone?
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Example of OO Programming Abstraction
•Think of a phone– it’s an object
•What can you do to a phone? Those are methods

ØTurn it on/off
ØOpen applications
ØMake a phone call
ØMute it
ØUpdate settings
Ø…

•You don't know how that operation is being done (i.e., 
implemented)
ØJust know what it does and that it works
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Example of OO Programming Abstraction
• A smart phone is an object
• Methods you can call on your smart phone:

ØTurn it on/off
ØOpen applications
ØMake a phone call
ØMute it
ØUpdate settings
Ø…

•SmartPhone is a class, a.k.a., a data type
ØMy smart phone (identified by myPhone) is an object of type 
SmartPhone

ØCall the above methods on any object of type SmartPhone
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Object-Oriented Programming
•Objects combine data and methods together
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Object o of
type X

Hides internal 
data structures, 
implementation

o.method()

Optionally may return
something back

Provides interface (methods) that 
users interact with

Use an Application Programming Interface (API)
to interact with a set of classes.
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Class Libraries
•Python provides libraries of classes

ØDefines methods that you can call on objects from those 
classes

Østr class provides a bunch of useful methods
•More on that later

•Third-party libraries
ØWritten by non-Python people
ØCan write programs using these libraries too
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Using a Graphics Module/Library
•Allows us to handle graphical input and output

ØExample output: Pictures
ØExample input: Mouse clicks

•Defines a collection of related graphics classes
•Not part of a standard Python distribution

ØNeed to import from graphics.py
•Use the library to help us learn object-oriented (OO) 

programming 
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USING A GRAPHICS MODULE
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Using a Graphics Module/Library
•Handout lists the various classes

ØConstructor is in bold
•Creates an object of that type

ØFor each class, lists some of their methods and parameters
ØDrawn objects have some common methods
•Listed at end of handout

•Known as an API
ØApplication Programming Interface
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Example of Output
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Using the Graphics Library
• In general, graphics are drawn on a canvas

ØA canvas is a 2-dimensional grid of pixels

•For our Graphics library, our canvas is a window
ØSpecifically an instance of the GraphWin class
ØBy default, a GraphWin object is 200x200 pixels
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A GraphWin Object’s Canvas
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coordinates for 
these points?
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A GraphWin Object’s Canvas
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X horizontal axis

Y

(0,0)

(200,200)

origin Coordinates are 
specified as (x,y)

What are the 
coordinates for 
these points?
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Using the API: Constructors
• To create an object of a certain type/class, use the 
constructor for that type/class
ØSyntax: 

ØSemantics: create an object of type ClassName with the given 
parameters and save it in the variable objName

ØNote:
• Class names typically begin with a capital letter
• Object names begin with a lowercase letter

Øobjname is known as an instance of the class ClassName
• Example: To create a GraphWin object that’s identified by 
window
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window = GraphWin("My Window",200,200)

objName = ClassName([parameters])
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The GraphWin API: Constructor
•All parameters to the constructor are optional

ØMarked by [ ] 
•Could call constructor as
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Call Meaning

GraphWin() Title, width, height to defaults (“Graphics 
Window”, 200, 200) 

GraphWin(<title>) Width, height to defaults

GraphWin(<title>,<width>) Height to default

GraphWin(<title>, <width>, 
<height>)
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Using the API: Methods
•To call a method on an object,

ØSyntax: 
ØSemantics: call methodName with the given parameters on 

the object identified by the name objName
ØSimilar to calling functions

•Method names typically begin with lowercase letter
•Example: To change the background color of a 
GraphWin object named window
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objName.methodName([parameters])
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Using the API: Accessor Methods
•A method sometimes returns output, which you may 

want to save in a variable
ØClass’s API should say if method returns output
ØReferred to as an accessor method

•Example: if you want to know the width of a GraphWin
object named window
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width = window.getWidth()

26



14

The GraphWin API: Accessor Methods
•Accessor methods for GraphWin

ØReturn some information about the GraphWin
•Example methods:

Ø<GraphWinObj>.getWidth()
Ø<GraphWinObj>.getHeight()
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The GraphWin API: Mutator Methods
• Mutator methods: methods that change or mutate an object/its 

state but don’t return anything
• Example: <GraphWinObj>.setBackground(<color>)

ØColors are strings, such as "red" or "purple"
• Can add numbers to end of string for darker colors, e.g., "red2", 

"red3", "red4"

ØChanges win's state but does not return anything to shell
• Don’t save method call in a variable
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win = GraphWin()
win.setBackground("purple")
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Summary: General Categories of Methods
Accessor
• Returns information about the object
• Example use – save method call’s 

output in a variable:
windowWidth = win.getWidth()

Mutator
• Changes the state of the object

Ø i.e., changes something about the object
• Example use:
win.setBackground("blue")
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What Does This Code Do?
1. Identify examples of the OO terminology in this code: 

class, objects, methods, constructors
2.Describe the output from this code
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from graphics import *

win = GraphWin("My Circle", 200, 200)
point = Point(100,100)
c = Circle(point, 10)
c.draw(win)
win.getMouse()

graphics_test.py
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What Does This Code Do?
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from graphics import *

win = GraphWin("My Circle", 200, 200)
point = Point(100, 100)
c = Circle(point, 10)
c.draw(win)
win.getMouse()

Constructor

GraphWin
object

Method called on GraphWin object

Also known as an 
instance of the
GraphWin class

Note: Class names start with capital letters,
Method names start with lowercase letters

Need to import the code from graphics.py into our program

Typical OOP Programming Process:
1. Create an instance of an class
2. Call methods on that object
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What objects make up this scene?
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Colors
•Strings, such as "blue4"
•Can also create colors using the function
color_rgb(<red>,<green>,<blue>)
ØParameters in the range [0,255]
ØExample use:

• Background is a dark blue/green color

ØExample color codes: 
• http://en.wikipedia.org/wiki/List_of_colors
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darkBlueGreen = color_rgb(10, 100, 100)
win.setBackground(darkBlueGreen)
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Using the Graphics Library
• Create an instance of a Rectangle that is blue and 50x100 

pixels in the upper left of the window

• Draw the rectangle

• Shift the instance of the Rectangle class to the right 10 
pixels

• Find out the x- and y- coordinates of the upper-left corner 
of the Rectangle now
Jan 23, 2023 Sprenkle - CSCI111 34rectangle.py
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OO Terminology Summary
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Term Definition Examples

Class
A data type.  Defines the 
data and operations for 
members of the class

str, SmartPhone, GraphWin

Object An instance of a specific 
class animal, myPhone, window

Method Operations you can call on 
an object

setBackground(<color>), 
getWidth()

Constructor
Special method to create an 
object of a certain 
type/class

GraphWin(), str(1234)
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Problem: 
Draw a Full-Canvas Tic-Tac-Toe Board

•Using the Graphics API
•Make lines purple with line width 3
•The width and height of the canvas is 200
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Benefits of Object-Oriented Programming
•Abstraction

ØHides details of underlying implementation
ØEasier to change implementation 

•Collects related data/methods together
ØEasier to reason about data

•Less code in main program
ØOur program code is relatively simple
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Looking Ahead
•Pre Lab 2 due tomorrow before lab

ØYou’re going to make “something significant” using the 
graphics library

•Broader Issue due Thursday at 11:59 p.m.
ØAll will be done at that time
ØI won’t put the deadline on the Canvas discussion forum 

because then I can’t accept late assignments.
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