
1

Objectives
• Introduction to Object-Oriented Programming
• Introduction to APIs

Jan 23, 2023 Sprenkle - CSCI111 1

1

Review
•How do we get input from a user?

ØGive example of getting input from a user, one where we
want a string and one where we want a number

•What is the testing process? What is our goal in
testing?

Jan 23, 2023 Sprenkle - CSCI111 2

2

2

Review: Getting Input From User
•input is a function

ØFunction: A command to do something
•A “subroutine”

•Syntax:
Øinput(<string_prompt>)

•Semantics:
ØDisplay the prompt <string_prompt> in the terminal
ØRead in the user’s input and return it as a string/text

Jan 23, 2023 Sprenkle - CSCI111 3

3

Review: Getting Input From a User
•Save the result of calling input in a variable

ØEx:

• If you want the assigned variable to be of type int or
float, we need to convert the result of calling input
ØEx:

Jan 23, 2023 Sprenkle - CSCI111 4

color = input("What is your favorite color? ")

height = eval(input("Enter the height: "))
width = float(input("Enter the width: "))

Tradeoffs in which approach to use. For another time…

4

3

Review: Testing Process

• Test case:
ØInput used to test the program
ØExpected output given that input

• Verify if output is what you expected
• Goal: create good test cases that will reveal if there is a

problem in your code

Program

Verify output

OutputInput

Expected
Output

Test Case

Jan 23, 2023 Sprenkle - CSCI111 5

If output is not what you expect, debug!

5

Programming Paradigm: Imperative
•Most modern programming languages are imperative
•Have data (numbers and strings in variables)
•Perform operations on data using operations, such as +

(addition and concatenation)
•Data and operations are separate

•Add to imperative: object-oriented programming

Jan 23, 2023 Sprenkle - CSCI111 6

6

4

OBJECT-ORIENTED PROGRAMMING

Jan 23, 2023 Sprenkle - CSCI111 7

7

Object-Oriented Programming
•Program is a collection of objects
•Objects combine data and methods together
•Objects interact by invoking methods on other objects

ØMethods perform some operation on object

Jan 23, 2023 Sprenkle - CSCI111 8

8

5

Object-Oriented Programming
•Program is a collection of objects
•Objects combine data and methods together
•Objects interact by invoking methods on other objects

ØMethods perform some operation on object

Jan 23, 2023 Sprenkle - CSCI111 9

Object o of
type X

Hides
internal data

o.method()

Optionally may return
something back

9

Object-Oriented Programming
•We’ve been using objects--just didn’t call them objects
•For example: str is a data type (or class)

ØWe created objects of type (class) string
•animal = "cow"
•coursename = "csci111"

Jan 23, 2023 Sprenkle - CSCI111 10

memory

Objects of
type str

Variable
names/

identifiers

"cow"

"csci111"

animal

courseName

10

6

Example of OO Programming Abstraction
•Think of a smart phone– It's an object
•What can you do to a phone?

Jan 23, 2023 Sprenkle - CSCI111 11

11

Example of OO Programming Abstraction
•Think of a phone– it’s an object
•What can you do to a phone? Those are methods

ØTurn it on/off
ØOpen applications
ØMake a phone call
ØMute it
ØUpdate settings
Ø…

•You don't know how that operation is being done (i.e.,
implemented)
ØJust know what it does and that it works

Jan 23, 2023 Sprenkle - CSCI111 12

methods

12

7

Example of OO Programming Abstraction
• A smart phone is an object
• Methods you can call on your smart phone:

ØTurn it on/off
ØOpen applications
ØMake a phone call
ØMute it
ØUpdate settings
Ø…

•SmartPhone is a class, a.k.a., a data type
ØMy smart phone (identified by myPhone) is an object of type
SmartPhone

ØCall the above methods on any object of type SmartPhone

Jan 23, 2023 Sprenkle - CSCI111 13

13

Object-Oriented Programming
•Objects combine data and methods together

Jan 23, 2023 Sprenkle - CSCI111 14

Object o of
type X

Hides internal
data structures,
implementation

o.method()

Optionally may return
something back

Provides interface (methods) that
users interact with

Use an Application Programming Interface (API)
to interact with a set of classes.

14

8

Class Libraries
•Python provides libraries of classes

ØDefines methods that you can call on objects from those
classes

Østr class provides a bunch of useful methods
•More on that later

•Third-party libraries
ØWritten by non-Python people
ØCan write programs using these libraries too

Jan 23, 2023 Sprenkle - CSCI111 15

15

Using a Graphics Module/Library
•Allows us to handle graphical input and output

ØExample output: Pictures
ØExample input: Mouse clicks

•Defines a collection of related graphics classes
•Not part of a standard Python distribution

ØNeed to import from graphics.py
•Use the library to help us learn object-oriented (OO)

programming

Jan 23, 2023 Sprenkle - CSCI111 16

16

9

USING A GRAPHICS MODULE

Jan 23, 2023 Sprenkle - CSCI111 17

17

Using a Graphics Module/Library
•Handout lists the various classes

ØConstructor is in bold
•Creates an object of that type

ØFor each class, lists some of their methods and parameters
ØDrawn objects have some common methods
•Listed at end of handout

•Known as an API
ØApplication Programming Interface

Jan 23, 2023 Sprenkle - CSCI111 18

18

10

Example of Output

Jan 23, 2023 Sprenkle - CSCI111 19

19

Using the Graphics Library
• In general, graphics are drawn on a canvas

ØA canvas is a 2-dimensional grid of pixels

•For our Graphics library, our canvas is a window
ØSpecifically an instance of the GraphWin class
ØBy default, a GraphWin object is 200x200 pixels

Jan 23, 2023 Sprenkle - CSCI111 20

20

11

A GraphWin Object’s Canvas

Jan 23, 2023 Sprenkle - CSCI111 21

X horizontal axis

Y

(0,0)

(200,200)

origin Coordinates are
specified as (x,y)

a
x
i
s

v
e
r
t
i
c
a
l

What are the
coordinates for
these points?

21

A GraphWin Object’s Canvas

Jan 23, 2023 Sprenkle - CSCI111 22

X horizontal axis

Y

(0,0)

(200,200)

origin Coordinates are
specified as (x,y)

What are the
coordinates for
these points?

(200, 0)

(100, 100)

(0, 200)

a
x
i
s

v
e
r
t
i
c
a
l

22

12

Using the API: Constructors
• To create an object of a certain type/class, use the
constructor for that type/class
ØSyntax:

ØSemantics: create an object of type ClassName with the given
parameters and save it in the variable objName

ØNote:
• Class names typically begin with a capital letter
• Object names begin with a lowercase letter

Øobjname is known as an instance of the class ClassName
• Example: To create a GraphWin object that’s identified by
window
Jan 23, 2023 Sprenkle - CSCI111 23

window = GraphWin("My Window",200,200)

objName = ClassName([parameters])

23

The GraphWin API: Constructor
•All parameters to the constructor are optional

ØMarked by []
•Could call constructor as

Jan 23, 2023 Sprenkle - CSCI111 24

Call Meaning

GraphWin() Title, width, height to defaults (“Graphics
Window”, 200, 200)

GraphWin(<title>) Width, height to defaults

GraphWin(<title>,<width>) Height to default

GraphWin(<title>, <width>,
<height>)

24

13

Using the API: Methods
•To call a method on an object,

ØSyntax:
ØSemantics: call methodName with the given parameters on

the object identified by the name objName
ØSimilar to calling functions

•Method names typically begin with lowercase letter
•Example: To change the background color of a
GraphWin object named window
Jan 23, 2023 Sprenkle - CSCI111 25window.setBackground("blue")

objName.methodName([parameters])

25

Using the API: Accessor Methods
•A method sometimes returns output, which you may

want to save in a variable
ØClass’s API should say if method returns output
ØReferred to as an accessor method

•Example: if you want to know the width of a GraphWin
object named window

Jan 23, 2023 Sprenkle - CSCI111 26

width = window.getWidth()

26

14

The GraphWin API: Accessor Methods
•Accessor methods for GraphWin

ØReturn some information about the GraphWin
•Example methods:

Ø<GraphWinObj>.getWidth()
Ø<GraphWinObj>.getHeight()

Jan 23, 2023 Sprenkle - CSCI111 27

27

The GraphWin API: Mutator Methods
• Mutator methods: methods that change or mutate an object/its

state but don’t return anything
• Example: <GraphWinObj>.setBackground(<color>)

ØColors are strings, such as "red" or "purple"
• Can add numbers to end of string for darker colors, e.g., "red2",

"red3", "red4"

ØChanges win's state but does not return anything to shell
• Don’t save method call in a variable

Jan 23, 2023 Sprenkle - CSCI111 28

win = GraphWin()
win.setBackground("purple")

28

15

Summary: General Categories of Methods
Accessor
• Returns information about the object
• Example use – save method call’s

output in a variable:
windowWidth = win.getWidth()

Mutator
• Changes the state of the object

Ø i.e., changes something about the object
• Example use:
win.setBackground("blue")

Jan 23, 2023 Sprenkle - CSCI111 29

29

What Does This Code Do?
1. Identify examples of the OO terminology in this code:

class, objects, methods, constructors
2.Describe the output from this code

Jan 23, 2023 Sprenkle - CSCI111 30

from graphics import *

win = GraphWin("My Circle", 200, 200)
point = Point(100,100)
c = Circle(point, 10)
c.draw(win)
win.getMouse()

graphics_test.py

30

16

What Does This Code Do?

Jan 23, 2023 Sprenkle - CSCI111 31

from graphics import *

win = GraphWin("My Circle", 200, 200)
point = Point(100, 100)
c = Circle(point, 10)
c.draw(win)
win.getMouse()

Constructor

GraphWin
object

Method called on GraphWin object

Also known as an
instance of the
GraphWin class

Note: Class names start with capital letters,
Method names start with lowercase letters

Need to import the code from graphics.py into our program

Typical OOP Programming Process:
1. Create an instance of an class
2. Call methods on that object

31

What objects make up this scene?

Jan 23, 2023 Sprenkle - CSCI111 32

32

17

Colors
•Strings, such as "blue4"
•Can also create colors using the function
color_rgb(<red>,<green>,<blue>)
ØParameters in the range [0,255]
ØExample use:

• Background is a dark blue/green color

ØExample color codes:
• http://en.wikipedia.org/wiki/List_of_colors

Jan 23, 2023 Sprenkle - CSCI111 33

darkBlueGreen = color_rgb(10, 100, 100)
win.setBackground(darkBlueGreen)

33

Using the Graphics Library
• Create an instance of a Rectangle that is blue and 50x100

pixels in the upper left of the window

• Draw the rectangle

• Shift the instance of the Rectangle class to the right 10
pixels

• Find out the x- and y- coordinates of the upper-left corner
of the Rectangle now
Jan 23, 2023 Sprenkle - CSCI111 34rectangle.py

34

18

OO Terminology Summary

Jan 23, 2023 Sprenkle - CSCI111 35

Term Definition Examples

Class
A data type. Defines the
data and operations for
members of the class

str, SmartPhone, GraphWin

Object An instance of a specific
class animal, myPhone, window

Method Operations you can call on
an object

setBackground(<color>),
getWidth()

Constructor
Special method to create an
object of a certain
type/class

GraphWin(), str(1234)

35

Problem:
Draw a Full-Canvas Tic-Tac-Toe Board

•Using the Graphics API
•Make lines purple with line width 3
•The width and height of the canvas is 200

Jan 23, 2023 Sprenkle - CSCI111 36tictactoe.py
36

19

Benefits of Object-Oriented Programming
•Abstraction

ØHides details of underlying implementation
ØEasier to change implementation

•Collects related data/methods together
ØEasier to reason about data

•Less code in main program
ØOur program code is relatively simple

Jan 23, 2023 Sprenkle - CSCI111 37

37

Looking Ahead
•Pre Lab 2 due tomorrow before lab

ØYou’re going to make “something significant” using the
graphics library

•Broader Issue due Thursday at 11:59 p.m.
ØAll will be done at that time
ØI won’t put the deadline on the Canvas discussion forum

because then I can’t accept late assignments.

Jan 23, 2023 Sprenkle - CSCI111 38

38

