
1

Objective
•More for loop
•Using Functions
•Broader Issue: Algorithm Bias

Jan 27, 2023 Sprenkle - CSCI111 1

1

Review
• Which lab did you submit today?

ØHow many have you completed?
• What statement do we use to repeat something?
• What are the possible ways to use the range function?

ØWhat do they mean?
• When we suspect we need a loop to solve a problem, what

questions should we ask?
ØHow do the answers to those questions inform our solution to a loop

problem?
• What design pattern did the adding 5 numbers follow?

ØWhat are the steps of the pattern?

Jan 27, 2023 Sprenkle - CSCI111 2

2

2

Practicing for Loops
Ø A)

Ø B)

ØC)

Jan 27, 2023 Sprenkle - CSCI111 3

10
9
8
7
…
1
Blast off!

I had the time of my life
And I never felt this way before
And I swear this is true
And I owe it all to you

1
2
3
4
Tell me that you
love me more

What is getting repeated?
How many times?

3 times,
followed by Dirty bit

3

Programming Building Blocks
•Adding to your tool set!
•We can combine them to create more complex

programs
ØSolutions to problems

Jan 27, 2023 Sprenkle - CSCI111 4

Assign.

print for

input

4

3

Jan 27, 2023 Sprenkle - CSCI111 5

Discussion: Programming Practice
•Problem: Add 5 numbers, inputted by the user

•We could have implemented this program last week
Ø5 separate input statements, add up the numbers

•Consider how much easier this program is to change if
we want a different number of numbers added up

sum_nums.py
5

Review: Accumulator Design Pattern

1. Initialize accumulator variable
2. Loop until done

ØUpdate the value of the accumulator
3.Display result

Jan 27, 2023 Sprenkle - CSCI111 6

6

4

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 27, 2023 Sprenkle - CSCI111 7

7

Motivating Functions
• PB&J: spreading PB, spreading jelly

ØSimilar processes
ØWant to do many times
ØRather than saying “move the knife back and forth, condiment

side down, against the bread until you get X inches of …”, say
“spread”

•Benefits
ØReuse, reduce code
ØBreaks problems into more manageable pieces
ØEasier to read, write

Jan 27, 2023 Sprenkle - CSCI111 8

8

5

Example
•How would you find the area of this shape?

Jan 27, 2023 Sprenkle - CSCI111 9

9

Example
•How would you find the area of this shape?
•Algorithm Possibilities:

ØTotal Area = ½ bt ht + wr*hr

ØTotal Area = Area of triangle + Area of rectangle

Jan 27, 2023 Sprenkle - CSCI111 10

Which algorithm is easier to understand?

For (most) humans, words and abstraction of ideas
are easier to understand

10

6

Functions
•Functions perform some task

ØMay take arguments/parameters
ØMay return a value that can be used in assignment

Jan 27, 2023 Sprenkle - CSCI111 11

functionInput
(arguments)

Output
(return value)

What does it do?
How does it do it?

We don’t know how it does it,
but it’s okay because it doesn’t matter

àas long as it works!

11

Functions

•Syntax:
Øfunc_name(arg0, arg1, …, argn)

•Depending on the function, arguments may or may not
be required
Ø[] indicate an optional argument

•Semantics: depend on the function
Jan 27, 2023 Sprenkle - CSCI111 12

Argument list (input)

functionInput
(arguments)

Output
(return value)

12

7

Built-in Functions
•Python provides some built-in functions for common

tasks

•input([prompt])
ØIf prompt is given as an argument, prints the prompt

without a newline/carriage return
ØIf no prompt, just waits for user’s input
ØReturns user’s input (up to “enter”) as a string

Jan 27, 2023 Sprenkle - CSCI111 13

Known as function’s signature; a template for how to call function
Optional argument

13

Description of print
•print(*objects, sep=' ', end='\n',
file=sys.stdout)

ØPrint object(s) to the stream file, separated by sep and
followed by end.

ØBoth sep and end must be strings; they can also be None,
which means to use the default values. If no object is given,
print() will just write end.

Jan 27, 2023 Sprenkle - CSCI111 14

https://docs.python.org/3/library/functions.html#print

Semantics: default values for sep is ' ' and end is '\n'

14

8

Description of print
•print(*objects, sep=' ', end='\n',
file=sys.stdout)

•Examples:

Jan 27, 2023 Sprenkle - CSCI111 15

print("Hi", "there", "class", sep='; ')
print("Put on same", end='')
print("line")

Hi; there; class
Put on samelineOutput:

print_examples.py

Semantics: default values for sep is ' ' and end is '\n'

15

More Examples of Built-in Functions

Jan 27, 2023 Sprenkle - CSCI111 16

Interpreter

Function Signature Description
round(x[,n]) Return the float x rounded to n digits

after the decimal point
If no n, round to nearest int

abs(x) Returns the absolute value of x
type(x) Return the type of x
pow(x, y) Returns xy

16

9

Using Functions
• Example use: Alternative to exponentiation

ØObjective: compute -32

ØPython alternatives:
•pow(-3, 2)
• (-3) ** 2

•We often use functions in assignment statements
ØFunction does something
ØSave the output of function (i.e., what is returned in a variable)

Jan 27, 2023 Sprenkle - CSCI111 17function_example.py

roundedX = round(x)

17

Python Libraries
•Beyond built-in functions, Python has a rich library of

functions and definitions available
ØThe library is broken into modules
ØA module is a file containing Python definitions and

statements
•Example modules

Ømath — math functions
Ørandom – functions for generating random numbers
Øos — operating system functions
Ønetwork — networking functions

Jan 27, 2023 Sprenkle - CSCI111 18

18

10

math Module
•Defines constants (variables) for pi (i.e., p) and e

ØThese values never change, i.e., are constants
ØRecall: we name constants with all caps

•Defines functions such as

Jan 27, 2023 Sprenkle - CSCI111 19

Function What it Does
ceil(x) Return the ceiling of x as a float
exp(x) Return e raised to the power of x
sqrt(x) Return the square root of x

19

Using Python Libraries
•To use the definitions in a module, you must first
import the module
ØExample: to use the math module’s definitions,

use the import statement: import math
ØTypically import statements are at top of program

•To find out what a module contains, use the help
function
ØExample within Python interpreter:
>>> import math
>>> help(math)

Jan 27, 2023 Sprenkle - CSCI111 20

20

11

Another Import Statement

• Examples:
Øfrom math import pi

• Means “import pi from the math module”
Øfrom math import *

• Means “import everything from the math module”
•With this import statement, don’t need to prepend

module name before using functions
ØExample: e**(1j*pi) + 1

Jan 27, 2023 Sprenkle - CSCI111 21

from <module> import <defn_name>

module_example_from_import.py

21

Using Definitions from Modules

•Prepend constant or function with modulename.
ØExamples for constants:
•math.pi
•math.e

ØExamples for functions:
•math.sqrt(num)

Jan 27, 2023 Sprenkle - CSCI111 22

module_example_import.py

import <module>

22

12

Comparing Import Statements

import <module>
• Requires prepending

constants/functions with module
Ø Ex: math.sqrt(num)

• Benefits:
Ø Helps you to know which module the

constant/function is coming from
Ø No problem with name clashes if two

modules define the same function
• math.aFunction()
• os.aFunction()

from <module> import <defn_name>
• Don’t need to prepend

constants/functions with module
Ø Ex: sqrt(num)

• Benefit: Easier to write/read

Jan 27, 2023 Sprenkle - CSCI111 23

23

Benefits of Using Python Libraries/Modules
•Don’t need to rewrite code that has already been

defined

• If it’s in a built-in Python module, it is very efficient (in
terms of computation speed and memory usage)

Jan 27, 2023 Sprenkle - CSCI111 24

24

13

Finding Modules To Use
•How do I know if functionality that I want already

exists?
ØPython Library Reference:
https://docs.python.org/3/library

• In the beginning, you will probably rewrite existing
functionality to help you learn how it works

Jan 27, 2023 Sprenkle - CSCI111 25

25

Broader Issue Groups

Jan 27, 2023 Sprenkle - CSCI111 26

26

https://docs.python.org/3/library

14

Broader Issue: Human Bias in Algorithms
• People use the term “algorithm” to refer to different things

Ø Distinguish those things
• Comment on this statement, in context of CSCI111: “Algorithms are

opinions embedded in code.”
• Reflect on “My department of education contact told me ‘It’s math and I

wouldn’t understand it.’”
Ø Why is it beneficial to make the algorithm transparent? To keep it opaque?

• Consider the sentencing algorithm that considered likelihood of
recidivism
Ø What should be considered in sentencing?
Ø How do we/should we “interrogate” algorithms?

• What algorithm are you questioning now?

Jan 27, 2023 Sprenkle - CSCI111 27

27

Broader Issue: Human Bias in Algorithms
•Our definition of algorithms and the types of problems we

solve are different than the ones described in the talk
ØThose algorithms: machine learning

• Learn from data to categorize it or make predictions
ØOurs are likely not opinions

•BUT, you’re learning more about programming and
algorithms and it’s a good idea to stop and question
algorithms and results
ØYou’ll be a purchaser of software and I want you to be informed

and ask good questions when making decisions
ØYet another benefit of the liberal arts

Jan 27, 2023 Sprenkle - CSCI111 28

28

15

Looking Ahead
•Pre Lab 3, Lab 3 next week

Jan 27, 2023 Sprenkle - CSCI111 29

29

