
1

Objective
•More Functions
•Animation
•random Module

Jan 30, 2023 Sprenkle - CSCI111 1

1

Review
• What is the accumulator design pattern?
• What are some variations in how we use the print function?
• What are benefits of functions?
• What is a module?

Ø What are some available modules? What functionality do they have?
Ø How can we find out what functionality is in a module?

• How can we access the functionality defined in the modules (two
ways)?
Ø How does that choice affect how we use the functionality in our code?

Jan 30, 2023 Sprenkle - CSCI111 2

Reminder: Review slides and notes from last time

2

2

Review: Accumulator Design Pattern

1. Initialize accumulator variable
2. Loop until done

ØUpdate the value of the accumulator
3.Display result

Jan 30, 2023 Sprenkle - CSCI111 3

3

Review: Using print
•print(*objects, sep=' ', end='\n',
file=sys.stdout)

•Examples:

Jan 30, 2023 Sprenkle - CSCI111 4

print("Hi", "there", "class", sep='; ')
print("Put on same", end='')
print("line")

Hi; there; class
Put on samelineOutput:

print_examples.py

Semantics: default values for sep is ' ' and end is '\n'

4

3

Review: Comparing Import Statements

import <module>
• Requires prepending

constants/functions with module
Ø Ex: math.sqrt(num)

• Benefits:
Ø Helps you to know which module the

constant/function is coming from
Ø No problem with name clashes if two

modules define the same function
• math.aFunction()
• os.aFunction()

from <module> import <defn_name>
• Don’t need to prepend

constants/functions with module
Ø Ex: sqrt(num)

• Benefit: Easier to write/read

Jan 30, 2023 Sprenkle - CSCI111 5

5

Review: Benefits of Functions
•Allows us to reuse, reduce code

ØDon’t need to rewrite code that has already been defined
•Breaks problems into more manageable pieces
•Easier to read, write
•From Python modules: know they work and are

efficient

Jan 30, 2023 Sprenkle - CSCI111 6

6

4

Jan 30, 2023 Sprenkle - CSCI111 7

Review: for loop analysis

•When we have range(5),
Øi is set to the values (0, 1, 2, 3, 4)
ØWhich means that loop executes 5 times

•Optional: start and step parameters

for i in range(5):
like assigning i values(0,1,2,3,4)
consecutively, each time through loop

rest of loop body …

7

Programming Building Blocks
•Adding to your tool set
•We can combine them to create more complex

programs
ØSolutions to problems

Jan 30, 2023 Sprenkle - CSCI111 8

Assign.

print for

input import

8

5

Moving a Circle According to the User
•Draw a circle in the upper left-hand corner of the

screen
•Tell the user to click somewhere
•Move the circle to where the user clicked

Jan 30, 2023 Sprenkle - CSCI111 9

Hmm…. Some of these steps seem very
different from what we’ve been doing.

Can we even do them?
How can we figure out if we can?

circleShift.py
9

ANIMATION

Jan 30, 2023 Sprenkle - CSCI111 10

10

6

Animation
•Use combinations of the method move and the

function sleep
ØNeed to sleep so that humans can see the graphics moving
ØOtherwise, computer processes the moves too fast!

•sleep is part of the time module
Øtakes a float representing seconds and pauses for that

amount of time

Jan 30, 2023 Sprenkle - CSCI111 11

animate.py

11

Animate Circle Shift!
•Animate moving a circle to the position clicked by the

user
ØPreviously, moved in one fell swoop

ØTo animate
•Break the movement into chunks
•Repeatedly, move one chunk, sleep

•Bonus: do the user clicks, animation 3 times
Jan 30, 2023 Sprenkle - CSCI111 12circleShiftAnim.py

dx = newX - circle.getCenter().getX()
dy = newY - circle.getCenter().getY()

circle.move(dx, dy)

12

7

Examples of Animation
•From Previous Classes

Jan 30, 2023 Sprenkle - CSCI111 13

13

random module
•Python provides the random module to generate

pseudo-random numbers
•What is “pseudo-random”?

ØGenerates a list of random numbers and grabs the next one
off the list

ØA seed is used to initialize the random number generator,
which decides which list to use
•By default, the current time is used as the seed

Jan 30, 2023 Sprenkle - CSCI111 14

14

8

List of Lists of Random Numbers

Jan 30, 2023 Sprenkle - CSCI111 15

Seed List of Random Numbers

1 0.1343642441 0.8474337369 0.763774619 0.2550690257 ...

2 0.9560342719 0.9478274871 0.0565513677 0.0848719952 ...

3 0.2379646271 0.5442292253 0.3699551665 0.6039200386 ...

4 0.2360480897 0.1031660342 0.3960582426 0.1549722708 ...

… … ...

random_test.py

15

Why use “pseudo-random” numbers?
•No cost-effective source of real randomness
•Code usually doesn’t need to be truly random
•Can replicate the code that depends on randomness by

using the seed, when appropriate

Jan 30, 2023 Sprenkle - CSCI111 16

16

9

Some random Functions
•random()

ØReturns the next random floating point number in the range
[0.0, 1.0)

•randint(a, b)
ØReturn a random integer N such that a ≤ N ≤ b

Jan 30, 2023 Sprenkle - CSCI111 17

import random

#random.seed(1) # module.function()

for x in range(10):
print(random.random()) random_test.py

17

VA Lottery: Pick 4
•To play: pick 4 numbers between 0 and 9
•To win: select the numbers that are selected by the

magic ping-pong ball machine

•Your job: Simulate the magic ping-pong ball machines
ØDisplay the number on one line

Jan 30, 2023 Sprenkle - CSCI111 18pick4.py

18

10

Looking Ahead
•Pre Lab 3 due before lab
•Lab 3 due Friday
•Broader Issue on Chat GPT for Friday

Jan 30, 2023 Sprenkle - CSCI111 19

19

