
1

Objectives
•Testing functions
•Refining our development process

Feb 6, 2023 Sprenkle - CSCI111 1

1

Review
•What is a variable’s scope?

ØWhat are the scope levels?
ØWhat scope do most of the variables we were discussing

have?

•How do we document a function? What should its
content be?

•What makes a “good” function?

Feb 6, 2023 Sprenkle - CSCI111 2

2

2

Feb 6, 2023 Sprenkle - CSCI111 3

Review: Writing a “Good” Function
• Should be an “intuitive chunk”

ØDoesn’t do too much or too little
ØIf does too much, try to break into more functions

• Should be reusable
• Should have a descriptive, “action” name
• Should have a comment that tells what the function does

3

Review: Writing Documentation for Functions
• Good style: Each function* must have a comment that documents

its use
Ø *main() usually doesn’t have a doc string -- covered by the program’s

description

• Describes functionality at a high-level
• Include the precondition, postcondition
• Describe the parameters (their types) and the result of calling the

function (precondition and postcondition may cover this)
• The exact format matters less than that the content is there

Ø I’ll show a few different ways to write the documentation

Feb 3, 2023 Sprenkle - CSCI111 4

4

3

Practice
•What is the output of this program?

ØExample: user enters 4

Feb 6, 2023 Sprenkle - CSCI111 5

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)
print("The original num was", n)

def square(n):
return n * n

main()

practice3.py

5

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)
print("The original num was", n)

def square(n):
return n * n

main()

Practice
•What is the output of this program?

ØExample: user enters 4

Feb 6, 2023 Sprenkle - CSCI111 6

Error! n does not
have a value in

function main()

6

4

Review: Variable Scope
• Functions can have the same

parameter and variable names as
other functions
Ø Need to look at the variable’s scope to

determine which one you’re looking at

Ø Use the stack to figure out which
variable you’re using

• Scope levels
Ø Local scope (also called function scope)

• Can only be seen within the
function

Ø Global scope (also called file scope)
• Whole program can access
• More on these later

• Know “lifetime” of variable
Ø Only during execution of function
Ø Related to idea of “scope”

• In general, our only global
variables will be constants because
we don’t want them to change
value
Ø e.g., EIEIO

Feb 6, 2023 Sprenkle - CSCI111 7

7

Testing Functions
• Functions make it easier for us to test our code
• We can write code to test the functions

ØTest Case:
• Input: parameters
• Expected Output: what we expect to be returned

Ø Or if state changed as we expected
ØWe can verify the function programmatically

• “programmatically” – automatically execute test cases and
verify that the actual returned result is what we expected

• No user input required!
Feb 6, 2023 Sprenkle - CSCI111 8

8

5

test Module
• Not a standard module

ØIncluded with our textbook
ØMore sophisticated testing modules but this is sufficient for us

• Function:
ØtestEqual(actual, expected[, places=5])

• Parameters: actual and expected results for a function.
• Displays "Pass" and returns True if the test case passes.
• Displays error message, with expected and actual results, and

returns False if test case fails.
Feb 6, 2023 Sprenkle - CSCI111 9

9

Example: Testing sumEvens
import test
…
def testSumEvens():

actual = sumEvens(10)
expected = 20
test.testEqual(actual, expected)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

Feb 6, 2023 Sprenkle - CSCI111 10

testSumEvens.py

This is the actual result
from our function

This is what we expect the result to be

What are other good test cases?

10

6

Practice
1.Define the function to calculate our favorite

expression: i² + 3j – 5
a. What does the function do?
b. What is its input?
c. What is its output?

2. Test the function
3.Use the function

Feb 6, 2023 Sprenkle - CSCI111 11

our_favorite_expression.py

11

Evolving General Design Patterns
•Former general design pattern:

1. Optionally, get user input
2. Do some computation
3. Display results

•Now general design pattern:
1. Optionally, get user input
2. Do some computation by calling functions, get results
3. Display results

Feb 6, 2023 Sprenkle - CSCI111 12

12

7

Development Process: Bottom-Up

2. Use the function in context/
call the function

1. Define a function
ØDocument
ØTest the function

Feb 6, 2023 Sprenkle - CSCI111 13

Function

Function

1

2

13

Example: Bottom-Up Development
•We just did Bottom-Up Development!

1.Define (and document and test) a function that
ØCalculates our favorite expression
ØReturns the the result of that expression

2.Create a program that
ØPrompts for i and j
ØDisplays the the result of that expression

Feb 6, 2023 Sprenkle - CSCI111 14our_favorite_expression.py

14

8

Practice: Finding a Team’s Winning Percentage
•There are lots of ways to develop programs
•Let’s go back to the way we originally developed

programs
•Problem:

ØPrompt the user for a team’s wins and losses and display the
team’s win percentage

Feb 6, 2023 Sprenkle - CSCI111 15
winpercent.py

15

REFACTORING
Another development approach

Feb 6, 2023 Sprenkle - CSCI111 16

16

9

Refactoring
• After you’ve written some code and it passes all your test cases, the code is

probably still not perfect
• Refactoring is the process of improving your code without changing its

functionality
Ø Organization
Ø Abstraction

• Example: Easier to read, change
Ø Easier to test

• Part of iterative design/development process
• Where to refactor with functions

Ø Duplicated code, known as a “Code smell”
Ø Reusable code
Ø Multiple lines of code for one purpose

Feb 6, 2023 Sprenkle - CSCI111 17

17

Example: PB & J

Feb 6, 2023 Sprenkle - CSCI111 18

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread
3. Put 2 pieces of bread on plate
4. Spread PB on one side of one slice
5. Spread Jelly on one side of other slice
6. Place PB-side facedown on Jelly-side of bread
7. Close bread
8. Clean knife
9. Put away materials

• Which of these are the “core” part of
making a PB & J sandwich?
• How would you describe the rest of

the parts?

18

10

Example: PB & J

Feb 6, 2023 Sprenkle - CSCI111 19

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread
3. Put 2 pieces of bread on plate
4. Spread PB on one side of one slice
5. Spread Jelly on one side of other slice
6. Place PB-side facedown on Jelly-side of bread
7. Close bread
8. Clean knife
9. Put away materials

19

Example: PB & J as Functions

Feb 6, 2023 Sprenkle - CSCI111 20

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread
3. Put 2 pieces of bread on plate
4. Spread PB on one side of one slice
5. Spread Jelly on one side of other slice
6. Place PB-side facedown on Jelly-side of bread
7. Close bread
8. Clean knife
9. Put away materials

def main():
prepare()
makePBJSandwich()
cleanUpSupplies()

main()

20

11

Example: PB & J as Functions, 10 x

Feb 6, 2023 Sprenkle - CSCI111 21

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread
3. Put 2 pieces of bread on plate
4. Spread PB on one side of one slice
5. Spread Jelly on one side of other slice
6. Place PB-side facedown on Jelly-side of bread
7. Close bread
8. Clean knife
9. Put away materials

def main():
prepare()
for sandwich in range(10):

makePBJSandwich()
cleanUpSupplies()

main()

21

Exam Friday
• In-class, on paper

Ø Emphasis on critical thinking
• Exam Preparation Document is on course web page
• Similar problems to class and lab

Ø Review questions
Ø Worksheets
Ø Problems

• Content: up through Tuesday’s lab 4
Ø Practicing what we learned Wed – Mon

• Bring your questions on Monday
• No broader issue this week

Feb 6, 2023 Sprenkle - CSCI111 22

22

12

Looking Ahead
•PreLab 4 due tomorrow
•Lab 4 – practice with functions
•No Broader Issue
•Exam on Friday

ØLook at Exam Prep Document

Feb 6, 2023 Sprenkle - CSCI111 23

23

