Objectives

Testing functions

Refining our development process

Feb 6, 2023

Sprenkle - CSCI111

Review

What is a variable’s scope?

What are the scope levels?
What scope do most of the variables we were discussing

have?

How do we document a function? What should its

content be?

What makes a “good” function?

Feb 6, 2023

Sprenkle - CSCI111

Review: Writing a “Good” Function

Should be an “intuitive chunk”
Doesn’t do too much or too little
If does too much, try to break into more functions
Should be reusable
Should have a descriptive, “action” name
Should have a comment that tells what the function does

Feb 6, 2023 Sprenkle - CSCI111

Review: Writing Documentation for Functions

Good style: Each function* must have a comment that documents

its use
*main() usually doesn’t have a doc string -- covered by the program’s
description

Describes functionality at a high-level
Include the precondition, postcondition

Describe the parameters (their types) and the result of calling the
function (precondition and postcondition may cover this)

The exact format matters less than that the content is there
I'll show a few different ways to write the documentation

Feb 3, 2023 Sprenkle - CSCI111 4

Practice

What is the output of this program?

Example: user enters 4

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)
print("The original num was", n)

def square(n):
return n * n

main(Q)

Feb 6, 2023 Sprenkle - CSCI111 pra ctice3. py

Practice

What is the output of this program?

Example: user enters 4

def main():

num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)

print("The original num was", n)<‘_~.~.~.

def square(n): Error! ndoes not
return n * n have a value in
main() function main()

Feb 6, 2023 Sprenkle - CSCI111

Review: Variable Scope

Functions can have the same Know “lifetime” of variable
parameter and variable names as
other functions

Need to look at the variable’s scope to Related to idea of “scope”

determine which one you’re looking at
In general, our only global

Only during execution of function

Use the stack to figure out which variables will be constants because
variable you're using we don’t want them to change
Scope levels value
Local scope (also called function scope)
e.g., EIEIO

Can only be seen within the
function

Global scope (also called file scope)
Whole program can access
More on these later

Feb 6, 2023 Sprenkle - CSCI111 7

Testing Functions

Functions make it easier for us to test our code

We can write code to test the functions

Test Case:
Input: parameters
Expected Output: what we expect to be returned
» Or if state changed as we expected

We can verify the function programmatically
“programmatically” — automatically execute test cases and
verify that the actual returned result is what we expected

No user input required!

Feb 6, 2023 Sprenkle - CSCI111

test Module

Not a standard module
Included with our textbook
More sophisticated testing modules but this is sufficient for us
Function:
testEqual(actual, expected[, places=5])
Parameters: actual and expected results for a function.
Displays "Pass" and returns True if the test case passes.

Displays error message, with expected and actual results, and
returns False if test case fails.

Feb 6, 2023 Sprenkle - CSCI111 9

Example: Testing sumEvens

import test

def testSumkEvens(): This is the actual result
actual = sumEvens(1@) from our function

= 2@ This is what we expect the result to be
test.testEqual(actual, D

.. What are other good test cases?
def sumEvens(limit): ’ -

total = 0

for x in range(@, limit, 2):
total += x

return total

testSumEvens.py

Feb 6, 2023 Sprenkle - CSCI111 10

10

Practice

Define the function to calculate our favorite
expression: i+ 3j—5
What does the function do?
What is its input?
What is its output?
Test the function
Use the function

our_favorite_expression.py

Feb 6, 2023 Sprenkle - CSCI111

11

Evolving General Design Patterns

Former general design pattern:
Optionally, get user input
Do some computation
Display results

Now general design pattern:
Optionally, get user input
Do some computation by calling functions, get results

Display results

Feb 6, 2023 Sprenkle - CSCI111

12

Development Process: Bottom-Up

Use the function in context/

. p) Function
call the function

Define a function 1
Document
Test the function

Feb 6, 2023 Sprenkle - CSCI111

13

Example: Bottom-Up Development
We just did Bottom-Up Development!

Define (and document and test) a function that
Calculates our favorite expression
Returns the the result of that expression
Create a program that
Prompts foriand j
Displays the the result of that expression

Feb 6, 2023 Sprenkle - CSCI111 ou r‘_f(]vol’"i_te_expr‘ession . py

14

Practice: Finding a Team’s Winning Percentage

There are lots of ways to develop programs

Let’s go back to the way we originally developed
programs

Problem:

Prompt the user for a team’s wins and losses and display the
team’s win percentage

Feb 6, 2023 Sprenkle - CSCI111 wi npe r Cent ° py 15

15

Another development approach

REFACTORING

Feb 6, 2023 Sprenkle - CSCI111

16

Refactoring

After you’ve written some code and it passes all your test cases, the code is
probably still not perfect

Refactoring is the process of improving your code without changing its
functionality

Organization
Abstraction
Example: Easier to read, change

Easier to test
Part of iterative design/development process
Where to refactor with functions

Duplicated code, known as a “Code smell”

Reusable code

Multiple lines of code for one purpose

Feb 6, 2023 Sprenkle - CSCI111 17

17

Example: PB & J

1. Gather materials (bread, PB, J, knives, plate)

. Open bread

Put 2 pieces of bread on plate

. Spread PB on one side of one slice

. Spread Jelly on one side of other slice

Place PB-side facedown on Jelly-side of bread

. Close bread * Which of these are the “core” part of
Clean knife making a PB & J sandwich?

. * How would you describe the rest of
Put away materials the parts?

©0ONO U~ WN

Feb 6, 2023 Sprenkle - CSCI111 18

18

Feb 6, 2023

Example: PB & J

k

1.
2.

Gather materials (bread, PB, J, knives, plate))
Open bread

Y,
. Put 2 pieces of bread on plate)

. Spread Jelly on one side of other slice

Spread PB on one side of one slice

Place PB-side facedown on Jelly-side of bread /

_Looo\n_G\m:bcD

. Close bread
. Clean knife

Put away materials

Sprenkle - CSCI111

19

Feb 6, 2023

S

Example: PB & J as Functions
(1.
2.

Gather materials (bread, PB, J, knives, plate))
Open bread

J
. Put 2 pieces of bread on plate)
. Spread PB on one side of one slice

. Spread Jelly on one side of other slice

Place PB-side facedown on Jelly-side of bread /

. Close bread

_LDOO\IG\m-b(D

def main():
prepare()

. Clean knife makePBJSandwich()

Put away materials

main()

Spre

20

20

10

Example: PB & J as Functions, 10 x
[1. Gather materials (bread, PB, J, knives, plate) W
2. Open bread

N B

7 - def main():
3. Put 2 pieces of b prepare()
4. Spread PB on on for sandwich in range(10):
5. Spread Jelly on o makePBJSandwich()

\ 6. Place PB-side fac main()
7. Close bread
8. Clean knife
9. Put away materials

21
Exam Friday

In-class, on paper

Emphasis on critical thinking
Exam Preparation Document is on course web page
Similar problems to class and lab

Review questions

Worksheets
Problems

Content: up through Tuesday’s lab 4
Practicing what we learned Wed — Mon
Bring your questions on Monday

No broader issue this week

Feb 6, 2023 Sprenkle - CSCI111 22

22

11

Looking Ahead

PreLab 4 due tomorrow
Lab 4 — practice with functions
No Broader Issue

Exam on Friday
Look at Exam Prep Document

Feb 6, 2023 Sprenkle - CSCI111

23

23

12

