Obijectives

Conditionals

Exam review

Feb 8, 2023 Sprenkle - CSCI111

Your Learning Journey

You’re learning a lot
Struggle is part of the learning

Learning In Lab

45
40
35
30
25
20
15
10

5

0
12345678 910111213141516171819202122232425

—Learning

Feb 8, 2023 Sprenkle - CSCI111




Your Learning Journey

But struggle affects your confidence
»Confidence != Learning

Learning vs Confidence in Lab

Lab ends and ... ???

cnbBEBRB8USEH

1234567 89101112131415161718192021 22232425

—Learning —Confidence

Feb 8, 2023 Sprenkle - CSCI111 3

Your Learning Journey

But struggle affects your confidence
»Confidence != Learning

After Lab...
s /_/Keep reviewing, practicing
15 Learning may not increase as much,
o but confidence should

—Learning —Confidence

Feb 8, 2023 Sprenkle - CSCI111 4




Review

What makes a “good” function?
What are benefits of functions?
What does the return statement do?

What does it mean to “programmatically test” a
function?

What are the benefits of programmatic testing?

What development approaches did we discuss?
What are their steps?

Feb 8, 2023 Sprenkle - CSCI111

Review: Writing a “Good” Function

Should be an “intuitive chunk”
Doesn’t do too much or too little

If does too much, try to break into more functions
Should be reusable
Should have an “action” name

Should have a comment that tells what the function does

Feb 8, 2023 Sprenkle - CSCI111




Review: Why Write Functions?

Allows you to break up a problem into smaller, more manageable
parts

Makes your code easier to understand
Hides implementation details (abstraction)
Provides interface (input, output)
Makes part of the code reusable so that you:
Only have to write function code once
Can debug it all at once
Isolates errors

Can make changes in one function (maintainability)

Feb 8, 2023 Sprenkle - CSCI111 7

Review: Refactoring:

Converting Functionality into Functions
Identify functionality that should be put into a function
What should the function do?
What is the function’s input?
What is the function’s output (i.e., what is returned)?
Define the function
Write comments
Test the function programmatically
Comment out the other code temporarily
Call the function where appropriate
Create a main function that contains the “driver” for your program
Put at top of program
Callmain at bottom of program

Feb 8, 2023 Sprenkle - CSCI111 8




Why Refactoring?

Common practice: write code, then realize it would be
better (more readable, reusable, easier to test, ...) if it
were in a function

Feb 8, 2023 Sprenkle - CSCI111

Review: Testing Functions

Functions make it easier for us to test our code

We can write code to test the functions

Test Case:
Input: parameters
Expected Output: what we expect to be returned
» Or if state changed as we expected

We can verify the function programmatically
“programmatically” — automatically execute test cases and
verify that the actual returned result is what we expected

No user input required!

Feb 8, 2023 Sprenkle - CSCI111

10




Review: test Module

Not a standard module

Included with our textbook

More sophisticated testing modules but this is sufficient for us
Function:

testEqual(actual, expected[, places=5])
Parameters: actual and expected results for a function.
Displays "Pass" and returns True if the test case passes.

Displays error message, with expected and actual results, and
returns False if test case fails.

Feb 8, 2023 Sprenkle - CSCI111 11

11

test module’s testEqual function

def testWinPercentage():
test.testEqual( calculateWinPercentage(@, 1), 0 )
test.testEqual( calculateWinPercentage(2, 2), .5 )
test.testEqual( calculateWinPercentage(3, 7), .3 )
test.testEqual( calculateWinPercentage(1l, @), 1 )
Could add a parameter for the

testWinPercentage() number of decimal places of precision

After confirming that the function works...

Feb 8, 2023 Sprenkle - CSCI111 12

12




test module’s testEqual function

def testWinPercentage(Q):
test.testEqual( calculateWinPercentage(@, 1), 0 )
test.testEqual( calculateWinPercentage(2, 2), .5
test.testEqual( calculateWinPercentage(3, 7), .3
test.testEqual( calculateWinPercentage(1, @), 1 )

D)
D)

# testWinPercentage()
main(Q)

Comment out call to test function
Call main.

Feb 8, 2023 Sprenkle - CSCI111 13

13

Another Example of Programmatic Testing

Testing a constructor/function/method that affects

state:

def testGraphWin():
window = GraphWin("Title", 300, 200)
test.testEqual( window.getWidth(), 300 )
test.testEquals( window.getHeight(), 200 )

Call the constructor/function/method under test
Check the resulting state

Feb 8, 2023 Sprenkle - CSCI111 More on this later... 14

14



Parts of an Algorithm

Input, Output
Primitive operations
» What data you have, what you can do to the data
Naming
» |dentify things we’re using
Sequence of operations
Conditionals <:
» Handle special cases
Repetition/Loops
Subroutines
» Call, reuse similar techniques

Feb 8, 2023 Sprenkle - CSCI111

15

15

Making Decisions

Examples

> If the PB is new (has a safety seal)
Then, | will take off the safety seal

> If itis raining and it is cold
Then, | will wear a raincoat

» If it is Saturday or it is Sunday
Then, | will wake up at 9 a.m.
Otherwise, | wake up at 7 a.m.

> If the shirt is purple or the shirt is on sale and blue
Then, | will buy the shirt

Feb 8, 2023 Sprenkle - CSCI111

Sometimes, we do things only if some condition holds (i.e., “is true”)

16

16




Conditionals

Sometimes, we only want to execute a statement in
certain cases
Example: Finding the absolute value of a number
|4| =4
|-10] =10
To get the answer, we multiply the number by -1 only if it’s a
negative number

Code: if x < 0 :
abs = x*-1

Feb 8, 2023 sprenkre=tsCl111 17

17

1f Statements
Change the control flow of the program
fahr = eval(Cinput("..")) o= eval(i?put("m"))
. 1* X <0
celsius = 519 (fahr-32) TV\FE”SE

abs = x * -1 abs = x

print("celsius=", celsius)

print("abs=", abs)

Feb 8,2023 Sprenkle - CSCI111 18

18




Other Constructs That Change Control Flow

for loops

Repeats a loop body a fixed number of times before going to
the next statement after the for loop

for x in range(l@}:
for x in range(10):

print("Hello™) print("Hello")
print("Goodbye™") 2
next_statement .. print(fGoodbye")

next_statement ..

Feb 8,2023 Sprenkle - CSCI111 19

19

Other Constructs That Change Control Flow

Function calls

“Go execute some other code and then come back with the

result”
function()

x = function() i
|

Feb 8,2023 Sprenkle - CSCI111 20

20

10



Syntax of 1f statement: Simple Decision

if condition :
statementl
statement?2 “then” Body
* Note indentation

keyword

statementn English Examples:

1f it is raining :
| will wear a raincoat
1f the PBis new:
Remove the seal

Feb 8, 2023 Sprenkle - CSCI111

21

21

Conditions

Syntax (typical, others later):

<expr> <relational_operator> <expr>
Evaluates to either True or False

Boolean type

Feb 8, 2023 Sprenkle - CSCI111

22

22

11



Relational Operators

Syntax: <expr> <relational_operator> <expr>

Evaluates to either True or False
» Boolean type

w
Il Relational Operator Meaning
5 ?
3 < Less than?
Y <= Less than or equal to?
c =
Q
.§ _g > Greater than?
§ § >= Greater than or equal to?
o == Equals?
: 8
a< 1= Not equals?
Feb 8, 2023 Sprenkle - CSCI111 Use Python interpreter

23

23

Example: Using Conditionals
Determine if a number is even or odd

x = eval(input("Enter a number: "))
remainder = x % 2

if remainder == 0 :
print(x, "is even")
if remainder == 1:

print(x, "is oad”)

Feb 8, 2023 Sprenkle - CSCI111 evenorodd. py

24

24

12



Common Mistake:

Assignment Operator vs. Equality Operator
Assignment operator: =
Equality operator: ==

x = eval(Cinput("Enter a number: "))
remainder = x%2 Syntax error
if remainder = 0 :

print(x, "is even.")

Feb 8,2023 Sprenkle - CSCI111 25

25

Syntax of 1f statement: Two-Way Decision

if condition :

Jf statementl
2 statement?2 ; .
5 “then” Body English Example:
i if itis Saturday or it is Sunday :
< statementn | wake up at 9 a.m.
N else : else:
statementl | wake up at 7 a.m.
statement?2 “else” Body
statementn

Feb 8,2023 Sprenkle - CSCI111 26

26

13



If-Else statements (absolute values)

_ if x <0 :
ggsx_:(@ : abs = x * -1
abs *= -1 else:

. t " b _" b abs =X
prin ( abs , 4 S) pr"i_nt("abs=“, abs)

If statement If-else statement
X <0 X <0
False: jump to next /\ia'se
abs *= -1 statement abs = x * -1 adbs = x
print("abs=", abs) print("abs=", abs)

Feb 8,2023 Sprenkle - CSCI111 27

27

Example: Using Conditionals

Determine if a number is even or odd

More efficient implementation
Don’t need to check if remainder is 1 because if it’s not 0, it

must be 1
x = eval(input("Enter a number: "))
remainder = x % 2
if remainder ==
print(x, "is even")
else:
print(x, "is odd")

Feb8, 2023

28

28



Practice: Draw the Flow Chart

print("This program determines your birth year™)
print("given your age and current year")

printQ )

age = eval(input("Enter your age: "))

if age > 120
Lse prlnt( Don t be ridiculous, you can't be that old.™)
else
currentYear = eval(input("Enter the current year: "))
birthyear = currentYear - age
prlntg)
print("You were either born in", birthyear, end=' ')
rlnt("or birthyear-1)
prlnt( "Thank you Come again.™)

What does this code do?

Feb 8,2023 Sprenkle - CSCI111 29

29

Flow of Control

max: Given two numbers, returns

Is this implementation of
the greater number P

the function correct?

def max(numl, num2):
if numl >= num2:
theMax = numl
else:
theMax = num?2
return theMax

Feb 8,2023 Sprenkle - CSCI111 30

30

15



Flow of Control

def max(numl, num2):
if numl >= num2:
theMax = numl
else:
theMax = num?2
return theMax

theMax=numl

Feb 8, 2023 Sprenkle - CSCI111

numl >= nu

Tru

def max(Cnuml, num2):

m2

False

theMax=num2

T~

return theMax

—

return to caller

31

31

Flow of Control: Using return

max: Given two numbers, returns
the greater number

Feb 8, 2023 Sprenkle - CSCI111

Is this implementation of
the function correct?

def max(numl, num2):
if numl >= num2:

else:

return numl

return num?2

32

32

16



Flow of Control: Using return

Is this implementation of
the function correct?

def max(numl, num2): def max(numl, numZ):
if numl >= num2:
return numl
else: numl >= num2

return num2 Tru False

return numl return num?2

return to caller

Feb 8,2023 Sprenkle - CSCI111 33

33

Flow of Control: Using return

Is this implementation of
the function correct?

def max(numl, num2):
if numl >= num2:
return numl
return num?2

Feb 8,2023 Sprenkle - CSCI111 34

34

17



Flow of Control: Using return

Is this implementation of
the function correct?

def max(Cnuml, num2): def max(numl, num2):

if numl >= num2:
return numl
return num2 numl >= num2

True

return numj

—

return to caller return num?2

Implicit false branch:
Only way got here is if
v the condition was
not True

Feb 8, 2023 Sprenkl 35

35

Practice: Speeding Ticket Fines

Any speed clocked over the limit results in a fine of at
least $50, plus S5 for each mph over the limit, plus a
penalty of $200 for any speed over 90mph.
Our function
Input: speed limit and the clocked speed
Output: the appropriate fine
What should the appropriate fine be if the user is not
speeding?
Write test cases first!

Feb 8, 2023 Sprenkle - CSCI111 Speed‘i_ ngtl cket. py 36

36

18



Exam Friday

In-class, on paper

Emphasis on critical thinking
Exam Preparation Document is on course web page
Similar problems to class and lab

Review questions

Worksheets

Problems

Content: up through Lab 4
No broader issue this week

Feb 8, 2023 Sprenkle - CSCI111 37

37

Looking Ahead

Lab 4
Practicing functions
Due Friday

Exam Friday
No broader issue this week

Feb 8,2023 Sprenkle - CSCI111 38

38

19



