Obijectives

Conditionals

Exam review
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Your Learning Journey

You’re learning a lot
Struggle is part of the learning

Learning In Lab
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Your Learning Journey

But struggle affects your confidence
»Confidence != Learning

Learning vs Confidence in Lab

Lab ends and ... ???
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Your Learning Journey

But struggle affects your confidence
»Confidence != Learning

After Lab...
s /_/Keep reviewing, practicing
15 Learning may not increase as much,
o but confidence should

—Learning —Confidence
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Review

What makes a “good” function?
What are benefits of functions?
What does the return statement do?

What does it mean to “programmatically test” a
function?

What are the benefits of programmatic testing?

What development approaches did we discuss?
What are their steps?
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Review: Writing a “Good” Function

Should be an “intuitive chunk”
Doesn’t do too much or too little

If does too much, try to break into more functions
Should be reusable
Should have an “action” name

Should have a comment that tells what the function does

Feb 8, 2023 Sprenkle - CSCI111




Review: Why Write Functions?

Allows you to break up a problem into smaller, more manageable
parts

Makes your code easier to understand
Hides implementation details (abstraction)
Provides interface (input, output)
Makes part of the code reusable so that you:
Only have to write function code once
Can debug it all at once
Isolates errors

Can make changes in one function (maintainability)
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Review: Refactoring:

Converting Functionality into Functions
Identify functionality that should be put into a function
What should the function do?
What is the function’s input?
What is the function’s output (i.e., what is returned)?
Define the function
Write comments
Test the function programmatically
Comment out the other code temporarily
Call the function where appropriate
Create a main function that contains the “driver” for your program
Put at top of program
Callmain at bottom of program
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Why Refactoring?

Common practice: write code, then realize it would be
better (more readable, reusable, easier to test, ...) if it
were in a function
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Review: Testing Functions

Functions make it easier for us to test our code

We can write code to test the functions

Test Case:
Input: parameters
Expected Output: what we expect to be returned
» Or if state changed as we expected

We can verify the function programmatically
“programmatically” — automatically execute test cases and
verify that the actual returned result is what we expected

No user input required!
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Review: test Module

Not a standard module

Included with our textbook

More sophisticated testing modules but this is sufficient for us
Function:

testEqual(actual, expected[, places=5])
Parameters: actual and expected results for a function.
Displays "Pass" and returns True if the test case passes.

Displays error message, with expected and actual results, and
returns False if test case fails.
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test module’s testEqual function

def testWinPercentage():
test.testEqual( calculateWinPercentage(@, 1), 0 )
test.testEqual( calculateWinPercentage(2, 2), .5 )
test.testEqual( calculateWinPercentage(3, 7), .3 )
test.testEqual( calculateWinPercentage(1l, @), 1 )
Could add a parameter for the

testWinPercentage() number of decimal places of precision

After confirming that the function works...
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test module’s testEqual function

def testWinPercentage(Q):
test.testEqual( calculateWinPercentage(@, 1), 0 )
test.testEqual( calculateWinPercentage(2, 2), .5
test.testEqual( calculateWinPercentage(3, 7), .3
test.testEqual( calculateWinPercentage(1, @), 1 )

D)
D)

# testWinPercentage()
main(Q)

Comment out call to test function
Call main.

Feb 8, 2023 Sprenkle - CSCI111 13

13

Another Example of Programmatic Testing

Testing a constructor/function/method that affects

state:

def testGraphWin():
window = GraphWin("Title", 300, 200)
test.testEqual( window.getWidth(), 300 )
test.testEquals( window.getHeight(), 200 )

Call the constructor/function/method under test
Check the resulting state
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Parts of an Algorithm

Input, Output
Primitive operations
» What data you have, what you can do to the data
Naming
» |dentify things we’re using
Sequence of operations
Conditionals <:
» Handle special cases
Repetition/Loops
Subroutines
» Call, reuse similar techniques
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Making Decisions

Examples

> If the PB is new (has a safety seal)
Then, | will take off the safety seal

> If itis raining and it is cold
Then, | will wear a raincoat

» If it is Saturday or it is Sunday
Then, | will wake up at 9 a.m.
Otherwise, | wake up at 7 a.m.

> If the shirt is purple or the shirt is on sale and blue
Then, | will buy the shirt
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Sometimes, we do things only if some condition holds (i.e., “is true”)
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Conditionals

Sometimes, we only want to execute a statement in
certain cases
Example: Finding the absolute value of a number
|4| =4
|-10] =10
To get the answer, we multiply the number by -1 only if it’s a
negative number

Code: if x < 0 :
abs = x*-1
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1f Statements
Change the control flow of the program
fahr = eval(Cinput("..")) o= eval(i?put("m"))
. 1* X <0
celsius = 519 (fahr-32) TV\FE”SE

abs = x * -1 abs = x

print("celsius=", celsius)

print("abs=", abs)
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Other Constructs That Change Control Flow

for loops

Repeats a loop body a fixed number of times before going to
the next statement after the for loop

for x in range(l@}:
for x in range(10):

print("Hello™) print("Hello")
print("Goodbye™") 2
next_statement .. print(fGoodbye")

next_statement ..

Feb 8,2023 Sprenkle - CSCI111 19

19

Other Constructs That Change Control Flow

Function calls

“Go execute some other code and then come back with the

result”
function()

x = function() i
|
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Syntax of 1f statement: Simple Decision

if condition :
statementl
statement?2 “then” Body
* Note indentation

keyword

statementn English Examples:

1f it is raining :
| will wear a raincoat
1f the PBis new:
Remove the seal
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Conditions

Syntax (typical, others later):

<expr> <relational_operator> <expr>
Evaluates to either True or False

Boolean type
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Relational Operators

Syntax: <expr> <relational_operator> <expr>

Evaluates to either True or False
» Boolean type

w
Il Relational Operator Meaning
5 ?
3 < Less than?
Y <= Less than or equal to?
c =
Q
.§ _g > Greater than?
§ § >= Greater than or equal to?
o == Equals?
: 8
a< 1= Not equals?
Feb 8, 2023 Sprenkle - CSCI111 Use Python interpreter
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Example: Using Conditionals
Determine if a number is even or odd

x = eval(input("Enter a number: "))
remainder = x % 2

if remainder == 0 :
print(x, "is even")
if remainder == 1:

print(x, "is oad”)

Feb 8, 2023 Sprenkle - CSCI111 evenorodd. py
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Common Mistake:

Assignment Operator vs. Equality Operator
Assignment operator: =
Equality operator: ==

x = eval(Cinput("Enter a number: "))
remainder = x%2 Syntax error
if remainder = 0 :

print(x, "is even.")
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Syntax of 1f statement: Two-Way Decision

if condition :

Jf statementl
2 statement?2 ; .
5 “then” Body English Example:
i if itis Saturday or it is Sunday :
< statementn | wake up at 9 a.m.
N else : else:
statementl | wake up at 7 a.m.
statement?2 “else” Body
statementn
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If-Else statements (absolute values)

_ if x <0 :
ggsx_:(@ : abs = x * -1
abs *= -1 else:

. t " b _" b abs =X
prin ( abs , 4 S) pr"i_nt("abs=“, abs)

If statement If-else statement
X <0 X <0
False: jump to next /\ia'se
abs *= -1 statement abs = x * -1 adbs = x
print("abs=", abs) print("abs=", abs)
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Example: Using Conditionals

Determine if a number is even or odd

More efficient implementation
Don’t need to check if remainder is 1 because if it’s not 0, it

must be 1
x = eval(input("Enter a number: "))
remainder = x % 2
if remainder ==
print(x, "is even")
else:
print(x, "is odd")

Feb8, 2023
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Practice: Draw the Flow Chart

print("This program determines your birth year™)
print("given your age and current year")

printQ )

age = eval(input("Enter your age: "))

if age > 120
Lse prlnt( Don t be ridiculous, you can't be that old.™)
else
currentYear = eval(input("Enter the current year: "))
birthyear = currentYear - age
prlntg)
print("You were either born in", birthyear, end=' ')
rlnt("or birthyear-1)
prlnt( "Thank you Come again.™)

What does this code do?
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Flow of Control

max: Given two numbers, returns

Is this implementation of
the greater number P

the function correct?

def max(numl, num2):
if numl >= num2:
theMax = numl
else:
theMax = num?2
return theMax
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Flow of Control

def max(numl, num2):
if numl >= num2:
theMax = numl
else:
theMax = num?2
return theMax

theMax=numl
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numl >= nu

Tru

def max(Cnuml, num2):

m2

False

theMax=num2

T~

return theMax

—

return to caller
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Flow of Control: Using return

max: Given two numbers, returns
the greater number
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Is this implementation of
the function correct?

def max(numl, num2):
if numl >= num2:

else:

return numl

return num?2

32

32

16



Flow of Control: Using return

Is this implementation of
the function correct?

def max(numl, num2): def max(numl, numZ):
if numl >= num2:
return numl
else: numl >= num2

return num2 Tru False

return numl return num?2

return to caller
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Flow of Control: Using return

Is this implementation of
the function correct?

def max(numl, num2):
if numl >= num2:
return numl
return num?2
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Flow of Control: Using return

Is this implementation of
the function correct?

def max(Cnuml, num2): def max(numl, num2):

if numl >= num2:
return numl
return num2 numl >= num2

True

return numj

—

return to caller return num?2

Implicit false branch:
Only way got here is if
v the condition was
not True
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Practice: Speeding Ticket Fines

Any speed clocked over the limit results in a fine of at
least $50, plus S5 for each mph over the limit, plus a
penalty of $200 for any speed over 90mph.
Our function
Input: speed limit and the clocked speed
Output: the appropriate fine
What should the appropriate fine be if the user is not
speeding?
Write test cases first!
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Exam Friday

In-class, on paper

Emphasis on critical thinking
Exam Preparation Document is on course web page
Similar problems to class and lab

Review questions

Worksheets

Problems

Content: up through Lab 4
No broader issue this week
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Looking Ahead

Lab 4
Practicing functions
Due Friday

Exam Friday
No broader issue this week
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