Objectives

- Escape sequences
- Computer's representations of data types

Mar 1, 2023

Sprenkle - CSCI111

1

Lab 6 Reflection

- Reflection: How far have I come in Computer Science?
- Indefinite loops require a different way of thinking
- Likely, hardest problem was second rather than last
- Even more tools that you can combine—with new tools or old tools!
 - > A lot of String operations
 - Previously: a lot of arithmetic operations, but you're familiar with those
- Break down problems
 - > Solve what you can; break down what you can't
 - > Not necessarily linear development
 - May do something and then undo it for the next step

Mar 1, 2023

Sprenkle - CSCI111

Review

- How do you call a method on a string?
 - ➤ What is your favorite string method?
- True or False: You can change a string after it's been created

Mar 1, 2023

Sprenkle - CSCI111

3

Review: Strings are Immutable

You cannot change the value of strings

 For example, you cannot change a character in a string

>str[8] = 'S

Mar 1, 2023

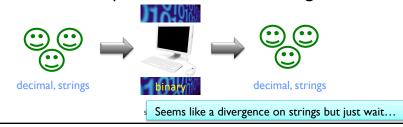
Sprenkle - CSCI111

Δ

5

Practice

- Display To print a tab, you must use '\t'.
- Display I said, "How are you?"


escape_sequence.py

Mar 1, 2023

Sprenkle - CSCI111

Representations of Data

- Computer needs to represent different types of data
 Eventually, all boils down to 1s and 0s
- Computer needs to translate between what humans know to what computer knows and back again

Mar 1, 2023

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each position in a decimal number represents a power of 10

Mar 1, 2023

Sprenkle - CSCI111

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each *position* in a decimal number represents a power of 10
- Example: 54,087

- $= 5*10^4 + 4*10^3 + 0*10^2 + 8*10^1 + 7*10^0$
- •= 5*10,000 + 4*1000 + 0*100 + 8*10 + 7*1

Mar 1, 2023

renkle - CSCI111

9

9

Number Representations

Characteristic	Decimal	Binary
Base	10	2
Digits	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	0, 1
Position represents	Power of 10	Power of 2

- Binary: two values (0, 1)
 - Like a light switch (either off or on) or booleans (either True or False)
- 0 and 1 are binary digits or bits
 - > 64-bit machine: represents numbers (and other data) with 64 bits

Mar 1, 2023

Sprenkle - CSCI111

Binary Representation

Binary number: 1101

1	1	0	1
2 ³	2 ²	2 ¹	2 ⁰

- $= 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0$
- •= 1*8 + 1*4 + 0*2 + 1*1
 - ➤ Decimal value: 13

Practice: what is the decimal value of the binary number **IOIIO**?

Mar 1, 20

Sprenkle - CSCI111

11

11

Binary Representation

Binary number: 10110

1	0	1	1	0
24	2 ³	2 ²	2 ¹	2 ⁰

- $= 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0$
- •= 1*16 + 0*8 + 1*4 + 1*2 + 0*1

>22

Mar 1, 2023

Sprenkle - CSCI111

Converting Binary to Decimal

- 1. Define good test cases for this algorithm/function
 - Input, expected results
- 2. Generalize this process into an algorithm
- 3. "Run" your algorithm on these test cases
- 4. Implement as function: binaryToDecimal(binaryNum)

Mar 1, 2023

orenkle - CSCI111

13

13

Algorithm 1: Converting Binary → Decimal

Left to right traversal of binary number

Accumulator design pattern

Given the binary number as a string

- 1. Initialize the result to zero
- 2. The starting exponent will be the length of the string-1
- 3. For each bit in the binary number
 - Multiply the bit by the appropriate power of 2
 - >Add this to the result
 - > Reduce the exponent by 1
- 4. Return the result

Mar 1, 2023

Sprenkle - CSCI111

Algorithm 2: Converting Binary → Decimal

Right to left traversal of binary number

Accumulator design pattern

Given the binary number as a string

- 1. Initialize the result to zero
- 2. Initialize the exponent to zero
- 3. Iterate over the positions of the binary number from right to left
 - Determine the bit at that position in the binary number
 - ➤ Multiply the bit by the appropriate power of 2
 - > Add this to the result
 - > Increase the exponent by 1
- 4. Return the result

Mar 1, 2023

Sprenkle - CSCI111

15

15

Practice

- Implement both algorithms
 - **≻**Test!
- After implementing, you can compare with my solutions
 - > binaryToDecimalIterateOverCharacters.py
 - > binaryToDecimalIterateOverExponents.py

Mar 1, 2023

Sprenkle - CSCI111

Looking Ahead

- Lab 6 due Friday
- Section 230 Broader Issue Thursday night

Sprenkle - CSCI111

17

Mar 1, 2023