
1

Objectives
•Dictionaries

March 15, 2023 Sprenkle - CSCI111 1

1

Lab Preparation Suggestions
• Review frequently

ØLearning a new language
ØBetter to have some practice every day (rather than every

week)
• Review example programs

ØDo you [still] understand them after class?
• Active work in interactive text book

ØDon’t just click the boxes
• Focus is on the current week, but we are using tools we

learned in the last ~8 weeks.
March 15, 2023 Sprenkle - CSCI111 2

2

2

LOOKUP ALTERNATIVES

March 15, 2023 Sprenkle - CSCI111 3

3

List/String Lookup
•How do we “lookup” a value in a list or a

character in a string?
•Answer:
ØBy its index/position

•Requires:
ØKnowing the index where a value is located

March 15, 2023 Sprenkle - CSCI111 4

4

3

Alternative Lookup
•Alternative: look up something by its key

ØExample: When I lookup my friend’s phone number in my
contacts, I don’t know that the number is at position X in
my contacts. I look up my friend’s number by her name.

ØNeed a fast way to figure out “given this key, what is the
value associated with it?”

•This type of data structure is known as a dictionary
in Python
ØMaps a key to a value
ØContacts’ key: name; value: phone number

March 15, 2023 Sprenkle - CSCI111 5

5

Examples of Dictionaries

•Any other things we’ve done/used in class?
March 15, 2023 Sprenkle - CSCI111 6

Dictionary Keys Values

Dictionary

Textbook’s index

Cookbook

URL (Uniform
Resource Locator)

6

4

Examples of Dictionaries

•Any other things we’ve done/used in class?
March 15, 2023 Sprenkle - CSCI111 7

Dictionary Keys Values

Dictionary Word Definition

Textbook’s index Keyword Page number

Cookbook Food type Recipes

URL (Uniform
Resource Locator)

URL Web page

7

Examples of Dictionaries
•Real-world:

ØDictionary
ØTextbook’s index
ØCookbook
ØURL (Uniform Resource Locator)

•Examples from class
ØVariable name à value
ØFunction name à function definition
ØASCII value à character

March 15, 2023 Sprenkle - CSCI111 8

8

5

Example: A Textbook’s Index

March 15, 2023 Sprenkle - CSCI111 9

20

60

35

20

"integer"

"string"

"float"

"list"

Keys

Values

Lots of empty space
to add new entries

Keys are not in any order

topicToPageNumber

Keys are unique;
values are not

necessarily unique

9

Dictionaries in Python
•Map keys to values
ØKeys are probably not alphabetized
ØMappings are from one key to one value
•Keys are unique, Values are not necessarily unique
ØExample: student id à last name

•Keys must be immutable (numbers, strings)
•Similar to Hashtables/Hashmaps in other

languages
March 15, 2023 Sprenkle - CSCI111 10

How would we handle if there is
more than one value for a given key?

10

6

Creating Dictionaries in Python
Syntax:
{<key>:<value>, …,
<key>:<value>}

March 15, 2023 Sprenkle - CSCI111 11

empty = {}
charToAscii = { 'a':97, 'b':98, …, 'z':122 }

11

Dictionary Operations

March 15, 2023 Sprenkle - CSCI111 12

Indexing <dict>[<key>]
Length (# of keys) len(<dict>)
Iteration for <key> in <dict>:
Membership <key> in <dict>
Deletion del <dict>[<key>]

Unlike strings and lists, doesn’t make sense to do slicing,
concatenation, repetition for dictionaries

12

7

Accessing Values Using Indexing
•Syntax:
<dictionary>[<key>]

•Examples:

•KeyError if key is not in dictionary
ØRuntime error; exits program

March 15, 2023 Sprenkle - CSCI111 13

charToAscii['z']

nameToPhoneNum['friendname']

13

Dictionary Methods

March 15, 2023 Sprenkle - CSCI111 14

Method Name Functionality

<dict>.clear() Remove all items from dictionary

<dict>.keys() Returns a copy of dictionary’s keys
(a set-like object)

<dict>.values() Returns a copy of dictionary’s values
(a set-like object)

<dict>.get(x [, default]) Returns <dict>[x] if x is a key;
Otherwise, returns None (or default value)

14

8

Accessing Values Using get Method
•Syntax: <dict>.get(x [,default])

ØSemantics: Returns <dict>[x] if x is a key
Otherwise, returns None (or default value)

•Examples:

• If no mapping, None is returned instead of KeyError
March 15, 2023 Sprenkle - CSCI111 15

charToAscii.get('z')

nameToPhoneNum.get('friendname')

15

Accessing Values: Look Before You Leap
•Typically, you will check if dictionary has a key

before trying to access the key

•Or handle if get returns default

March 15, 2023 Sprenkle - CSCI111 16

if 'friend' in nameToPhoneNum :
number = nameToPhoneNum['friend']

Know mapping exists
before trying to access

number = nameToPhoneNum.get('friend')
if number is None:

do something …
No phone number exists

16

9

Recall: Special Value None
•Special value we can use
ØE.g., Return value from function when there is an

error

•If you execute

ØPrints None because list.sort() does not return
anything

March 15, 2023 Sprenkle - CSCI111 17

list = list.sort()
print(list)

17

Example Using None as an Error

March 15, 2023 Sprenkle - CSCI111 18

def encryptLetter(letter, key):
"""
Pre: letter is a single lowercase letter, …
returns the lowercase letter encoded by the key.
If letter is not a lowercase letter, returns None
"""
if letter < 'a' or letter > 'z':

return None
#As usual …

example use
encLetter = encryptLetter(char, key)
if encLetter is None:

print("Can't encrypt character", char, "in message: ")

18

10

Inserting Key-Value Pairs
•Syntax:
<dictionary>[<key>] = <value>

•charToAscii['a'] = 97
ØCreates new mapping of 'a' à 97

March 15, 2023 Sprenkle - CSCI111 19ascii_dictionary.py
19

Textbook’s Index: Before Insertion

March 15, 2023 Sprenkle - CSCI111 20

20

60

35

20

"integer"

"string"

"float"

"list"

Keys

Values

topicToPageNumber["dictionary"]=58

20

11

Textbook’s Index: After Insertion

March 15, 2023 Sprenkle - CSCI111 21

20

60

35

58

20

"dictionary"

Keys

Values

topicToPageNumber["dictionary"]=58

"integer"

"string"

"float"

"list"

21

Adding/Modifying Key-Value Pairs
•Syntax:
<dictionary>[<key>] = <value>

•Example:
nameToPhoneNum['registrar'] = 8455

ØAdds mapping for 'registrar' to 8455
OR
ØIf mapping already existed, modifies old mapping to

8455
March 15, 2023 Sprenkle - CSCI111 22

22

12

Textbook’s Index: Before Modification

March 15, 2023 Sprenkle - CSCI111 23

20

60

35

58

20

"dictionary"

Keys

Values

topicToPageNumber["dictionary"]=63

"integer"

"string"

"float"

"list"

23

Textbook’s Index: After Modification

March 15, 2023 Sprenkle - CSCI111 24

20

60

35

63

20

"dictionary"

Keys

Values

topicToPageNumber["dictionary"]=63

"integer"

"string"

"float"

"list"

24

13

Methods keys() and values()
•Don’t return a list object
•But can be used similarly to a list
•If you want to make them into a list, use list

converter:

March 15, 2023 Sprenkle - CSCI111 25

keys = list(mydict.keys())

25

Using Dictionaries
•Demonstrates lots of operations, methods, etc. in

using dictionaries

March 15, 2023 Sprenkle - CSCI111 26

using_dictionary.py

26

14

Problem
• Given a file (data/roster.dat) of the

form
<firstname> <gradyear>

• Goal: quickly find the classyear of a
particular student
Ø Specifically, want to

• Repeatedly prompt user for a first name
of a student (given)

• Display that student’s graduation year

• Consider
Ø How would we solve this before

learning dictionaries?
Ø How would we solve this with

dictionaries?
• What is the key? What is the value?

Ø If that dictionary existed, how would
we implement the user input part?

Ø How do we parse the file to create
the dictionary?

March 15, 2023 Sprenkle - CSCI111 27years_dictionary.py

Whose class year? Bobby
Bobby is in the class of 2024

Person1 2025
Person2 2026
Person3 2024
Person4 2026
Person5 2024
…

Example file:

27

Solutions: Before Dictionaries
•Lots of possibilities
•One possibility:

ØRead through the file, looking for name; stop when found
•Another possibility:

ØCreate two lists: one for first names, one for class years
ØRead the file, split each line of the file, add the first name

and class year to the appropriate lists
ØFind the first name in the list à index of element in list
ØUse that index to find the class year in the other list

March 15, 2023 Sprenkle - CSCI111 28

28

15

Analyzing Before Dictionaries Solutions
•Not ideal because…
ØReading file multiple times
ØKeeping track of two lists
•If remove/add people, need to add/remove from

both lists to keep in sync
Øfind is a relatively expensive operation
•Has to look through each element: “Are you my

element?” until find the match

March 15, 2023 Sprenkle - CSCI111 29

29

Algorithm Using Dictionaries
• Create an empty dictionary
• Read in the file line by line

ØSplit the line
ØFrom the split, get the last name and the year
ØAdd a mapping of the last name to the year in the dictionary

• (accumulate the data/mappings in the dictionary)
• Process the data in the dictionary, e.g.,

ØDisplay it, in sorted order
ØGet user input to get answers

March 15, 2023 Sprenkle - CSCI111 30

30

16

Looking Ahead
•Lab 8 due Friday

March 15, 2023 Sprenkle - CSCI111 31

31

