
1

Objectives
•Exception Handling
•Searching

Mar 31, 2023 Sprenkle - CSCI111 1

1

Reviewing Lab 10
• Created two classes

ØUsed one class within another class
ØTested them
ØExample of a backend to a real application

• Could add a different user interface
• “Good judgment comes from experience”

ØTest methods after writing method
ØRemember your data types
ØRefer to the data type’s API

• What could you do to improve your development process?
Mar 31, 2023 Sprenkle - CSCI111 2

Text UI

Backend

Data
Store

Graphical UI

2

2

EXCEPTION HANDLING

Mar 31, 2023 Sprenkle - CSCI111 3

3

Runtime Errors: Exceptions
•“Raised” at runtime
•A signal that something “ain’t quite right”

ØSomething has occurred that can’t be easily handled using
typical Python structures

•When an exception is raised
ØProgram execution stops
ØPython prints out the traceback

•A report of the function calls made in your code to reach
this point

Mar 31, 2023 Sprenkle - CSCI111 4

4

3

Example Traceback

Mar 31, 2023 Sprenkle - CSCI111 5

$ python yearborn.py
This program determines your birth year
given your age and the current year

Enter your age: seven
Traceback (most recent call last):
File "/Users/sprenkles/Box/CSCI111/inclass/24-dictionaries/yearborn.py",
line 31, in <module>
main()

File "/Users/sprenkles/Box/CSCI111/inclass/24-dictionaries/yearborn.py",
line 12, in main
age = int(input("Enter your age: "))

ValueError: invalid literal for int() with base 10: 'seven'

Shows the problem (ValueError) and
the line where the error occurred and the execution path to get there
à called main on line 31, error is on line 12 in main

5

Handling Exceptions
•Using try/except statements
•Syntax:

•Example:

Mar 31, 2023 Sprenkle - CSCI111 6

try:
<body>

except [<errorType>] :
<handler>

try:
age = int(input("Enter your age: "))
currentyear = int(input("Enter the current year: "))

except:
print("Error: Your input was not in the correct form.")
print("Enter integers for your age and the current year")
sys.exit(1)

yearborn.py

Optional: use this to handle
specific error types appropriately

try body: Typical behavior/
No errors

6

4

Exception-Specific Handling
•Using try/except statements
•Syntax:

•Example:

Mar 31, 2023 Sprenkle - CSCI111 7

try:
<body>

except [<errorType>] :
<handler>

yearborn2.py

Optional: use this to handle
specific error types appropriately

try:
age = int(input("Enter your age: "))
currentyear = int(input("Enter the current year: "))

except ValueError:
print("Error: Your input was not in the correct form.")
print("Enter integers for your age and the current year")
sys.exit(1)

7

Discussion: sys.exit([status])
•What is sys.exit([status])?
ØA way to exit the program

•Where does it come from?
ØThe sys module; need to import
Øimport sys

Mar 31, 2023 Sprenkle - CSCI111 8

exit(...)
exit([status])

Exit the interpreter by raising SystemExit(status).
If the status is omitted or None, it defaults to zero (i.e., success).
If the status is an integer, it will be used as the system exit status.
If it is another kind of object, it will be printed and the system
exit status will be one (i.e., failure).

8

5

Examples of Types of Exceptions
•IndexError
ØWhen index is not found in the sequence

•KeyError
ØWhen a key is not found in the dictionary

•IOError:
ØFileNotFoundError: File doesn’t exist
ØPermissionError: Don’t have permission to read/write

file
Mar 31, 2023 Sprenkle - CSCI111 9

9

Exception Handling

•Exceptions are objects
•We can get more information about the exception

by printing them out
Mar 31, 2023 Sprenkle - CSCI111 10

try:
inFile = open(infileName, "r")
normally, would process file here…
inFile.close()

except IOError as exc :
print("Error reading \"" + infileName + "\".")
could be a variety of different problems,
so print out the exception and its type
print(exc)
print(type(exc))
sys.exit(1)

file_handle.py

10

6

Best Practices
•Prevent errors as best you can
ØExample: use if statements to verify data
•Key is in the dictionary before trying to access

•For errors you can’t prevent, handle them!
ØExample: We can check if a file exists before trying to

read it BUT between the check and actually reading
the file, the file could be deleted from the system!

Mar 31, 2023 Sprenkle - CSCI111 11

11

Review
•We discussed two different search techniques:
ØWhat were they?
ØHow do they compare?
ØWhat are their pros and cons?

•Continue working on the problem we ended with
(implementing the second search technique)

Mar 31, 2023 Sprenkle - CSCI111 12

12

7

Review: Search Using in Review
•Iterates through a list, checking if the element is

found
•Known as linear search
•Implementation:

Mar 31, 2023 Sprenkle - CSCI111 13

def linearSearch(searchlist, key):
for elem in searchlist:

if elem == key:
return True

return False

8 5 3 7

0 1 2 3

What are the strengths and weaknesses of implementing search this way?

value

pos

13

Review: Linear Search
•Overview: Iterates through a list, checking if the

element is found
•Benefits:
ØWorks on any list

•Drawbacks:
ØSlow, on average: needs to check each element of list

if the element is not in the list

Mar 31, 2023 Sprenkle - CSCI111 14

14

8

Review: Binary Search:
Eliminate Half the Possibilities
•Repeat until find value (or looked through all values)

ØGuess middle value of possibilities
•(not middle position)

ØIf match, found!
ØOtherwise, find out too high or too low
ØModify your possibilities

•Eliminate the possibilities from your number and
higher/lower, as appropriate

•Known as Binary Search
Mar 31, 2023 Sprenkle - CSCI111 15

15

Binary Search Implementation

Mar 31, 2023 Sprenkle - CSCI111 16

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid # return True
elif key > searchlist[mid]:

low = mid+1
else:

high = mid-1
return -1 # return False

If you just want to
know if it’s in the list

16

9

Binary Search
• Example of a Divide and Conquer algorithm

ØBreak into smaller pieces that you can solve
• Benefits:

ØFaster to find elements (especially with larger lists)
• Drawbacks:

ØRequires that data can be compared
•__lt__, __eq__ methods implemented by the class (or

another solution)
ØList must be sorted before searching

• Takes time to sort

Mar 31, 2023 Sprenkle - CSCI111 17

17

Key Questions in Computer Science
•How can we efficiently organize data?
•How can we efficiently search for data, given

various constraints?
ØExample: data may or may not be sortable

•What are the tradeoffs?

Mar 31, 2023 Sprenkle - CSCI111 18

18

10

Empirical Study of Search Techniques

•How long does it take to find various keys?
ØMeasure by the number of comparisons
ØVary the size of the list and the keys
ØWhat are good tests for the lists and the keys?

Mar 31, 2023 Sprenkle - CSCI111 19search_compare.py

Goal: Determine which technique is
better under various circumstances

19

Empirical Study of Search Techniques
•Analyzing Results …
ØBy how much did the number of comparisons for

linear search vary?
ØBy how much did the number of comparisons for

binary search vary?

•What conclusions can you draw from these
results?

Mar 31, 2023 Sprenkle - CSCI111 20

search_compare.py

20

11

Search Strategies Summary
•Which search strategy should I use under the

following circumstances?
ØI have a short list

ØI have a long list

ØI have a long sorted list

Mar 31, 2023 Sprenkle - CSCI111 21

21

Search Strategies Summary
• Which search strategy should I use under the following

circumstances?
ØI have a short list

• How short? How many searches? Linear (in)
ØI have a long list

• Linear (in) - because don’t know if in order, comparable
• Alternatively, may want to sort the list and then perform

binary search, if sorting first won’t be more effort than just
searching.

ØI have a long sorted list
• Binary

Mar 31, 2023 Sprenkle - CSCI111 22

22

12

Extensions to Search

Mar 31, 2023 Sprenkle - CSCI111 23

In InstaFace, we want to find people who have a certain name.

Consider what happens when searchlist is a list of Persons
and key is a name (a str)

We want to find a Person whose name matches the
key and return the Person

23

List of Person objects

Mar 31, 2023 Sprenkle - CSCI111 24

Example: looking for a person with the name “Tom”…

0 1 2 3 4

Person
Id:“1”
“Gal”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Person
Id: “4”
“Ben”

Person
Id: “5”

“Samuel”

24

13

List of Person objects

Mar 31, 2023 Sprenkle - CSCI111 25

0 1 2 3 4

Person
Id:“1”
“Gal”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Person
Id: “4”
“Ben”

Person
Id: “5”

“Samuel”

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Sorted by name, e.g., personList.sort(key=Person.getName)

25

Extensions to Solution

Mar 31, 2023 Sprenkle - CSCI111 26

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

Consider what happens when
searchlist is a list of Persons,
key is a str representing a name
Goal: return a Person object with that
name (key)

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

26

14

Extensions to Solution

Mar 31, 2023 Sprenkle - CSCI111 27

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

What should we do to make
search results more intuitive?

Consider what happens when
searchlist is a list of Persons,
key is a str representing the name

Goal: find a Person with a certain name

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

27

Summary of Extensions to Solution
•Check the name of the Person at the midpoint
•Represent, handle when no Person matches
•What could we do if more than one person has that

name?

•Note: we’re not implementing “name contains”
ØHow could we implement that?

Mar 31, 2023 Sprenkle - CSCI111 28

28

15

Looking Ahead
•Lab 11

Mar 31, 2023 Sprenkle - CSCI111 29

29

