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Objectives
•Two-dimensional lists
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Review
• What is exception handling?

Ø How do we implement it in our 
code?  What is the structure?

Ø What are best practices?

• What are the two types of search 
we discussed?
Ø How do they work?
Ø How do they compare?
Ø What are the tradeoffs between 

using linear search and binary 
search?

• Lists (for today’s lesson…)
Ø How do we find the number of 

elements in the list?
Ø How can we find the value of the 

third element in the list?
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Review: Handling Exceptions
•Using try/except statements
•Syntax:

•Example: 
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try:
<body>

except [<errorType>] :
<handler>

try:
age = int(input("Enter your age: "))
currentyear = int(input("Enter the current year: "))

except:
print("Error: Your input was not in the correct form.")
print("Enter integers for your age and the current year")
sys.exit(1)

yearborn.py

Optional: use this to handle 
specific error types appropriately

Typical/normal behavior

Handle exception
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Review: Best Practices
•Prevent errors as best you can
ØExample: use if statements to verify data

•For errors you can’t prevent, handle them!
ØExample: We can check if a file exists before trying to 

read it BUT between the check and actually reading 
the file, the file could be deleted from the system!
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Review: Search Using in Review
•Iterates through a list, checking if the element is 

found
•Known as linear search
•Implementation:

Apr 3, 2023 Sprenkle - CSCI111 5

def linearSearch(searchlist, key):
for elem in searchlist:

if elem == key:
return True

return False

8 5 3 7

0 1 2 3
value

pos
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Alternative: Like index method
•Iterates through positions in a list, checking if the 

element is found
•Still known as linear search
•Implementation:
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def linearSearch(searchlist, key):
for pos in len(range(searchlist)):

if searchlist[pos] == key:
return pos

return -1
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Review: Linear Search
•Overview: Iterates through a list, checking if the 

element is found
•Benefits:
ØWorks on any list

•Drawbacks:
ØSlow, on average: needs to check each element of list 

if the element is not in the list
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Review: Binary Search: 
Eliminate Half the Possibilities
• Repeat until find value (or looked through all values)

ØGuess middle value of possibilities
• (not middle position)

ØIf match, found!
ØOtherwise, find out too high or too low
ØModify your possibilities
•Eliminate the possibilities from your number and 

higher/lower, as appropriate
• Benefits: faster than linear search
• Drawbacks: requires sorted list
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2D LISTS
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Lists
• We’ve used lists that contain

ØIntegers
ØStrings
ØCards (Deck class)
ØPersons (your Person class)

• We discussed that lists can contain multiple types of 
objects within the same list
ØWheel of Fortune: [“Bankrupt”, 250, 350, …]

• Lists can contain any type of object
ØEven LISTS!
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Review of Regular (1D) Lists
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onedlist = [ 7, -1, 23 ]

Elements in the list

•How do we find the number of elements in the list?
•How can we find the value of the third element in the list?
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Review of Regular (1D) Lists

•len(onedlist) is 3
•onedlist[2] is 23 
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onedlist = [ 7, -1, 23 ]

Elements in the list
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list
twod[2]

list
twod[1]

A List of Lists: 2-Dimensional List
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twod

twod = [ [1,2,3,4], [5,6], [7,8,9,10,11] ]

list
twod[0]

twod[0] twod[1] twod[2]

1st dimension
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A List of Lists: 2-Dimensional list

• “Rows” within 2-dimensional list do not need to be the same 
length

• However, it’s often easier if they’re the same length!
Ø We’ll focus on “rectangular” 2D lists
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twod = [ [1,2,3,4], [5,6], [7,8,9,10,11] ]

list
twod[2]

list
twod[1]

list
twod[0]

twod
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Handling Rectangular Lists

• What does each component of twod[1][2] mean?
• How can we programmatically determine the number of rows in 
twod? The number of columns in a given row?
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list

list

list

twod[0]

twod[1]

twod[2]
twod[2][3]

twod[0][0]

twod[1][2] = 42twod

15

Handling Rectangular Lists

• How can we programmatically determine the number of rows in twod?  
Ø rows = len(twod)

• The number of columns in a given row?
Ø cols = len(twod[whichRow])
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list

list

list

twod[0]

twod[1]

twod[2]

42

twod[1][2] = 42

twod[2][3]

twod[0][0]

Row pos
Col pos

2-d list var

Assignment

twod

16
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def mystery(twod):
""" ‘run’ this on twod, at right """
for row in range( len(twod) ):

for col in range( len(twod[row]) ):
if row == col:

twod[row][col] = 42
else:

twod[row][col] += 1

2D List Practice
Starting with the 2D list twod shown, 

what are the values in twod after 
running this code?
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1   2   3   4
5   6   7   8
9  10  11  12

twod Before

twod After

row 0
row 1

row 2

col 0 col 1 col 2 col 3

mystery.py
17

def mystery(twod):
""" ‘run’ this on twod, at right """
for row in range( len(twod) ):

for col in range( len(twod[row]) ):
if row == col:

twod[row][col] = 42
else:

twod[row][col] += 1

2D List Practice
Starting with the 2D list twod shown, 

what are the values in twod after 
running this code?
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1   2   3   4
5   6   7   8
9  10  11  12

twod Before

twod After

row 0
row 1

row 2

col 0 col 1 col 2 col 3

mystery.py

42 3 4 5

6 42 8 9

10 11 42 13

18
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Example Process for Creating a 2D List
twod = [ ]

• Create a row of the list, e.g., 
row = [1, 2, 3, 4] or row = list(range(1,5))
or row = [0] * 4 or …

• Then append that row to the list
twod.append( row )
print(twod)

• [ [1, 2, 3, 4] ]

• Repeat
row = list(range(1,5))
twod.append( row )
print(twod)

• [ [1, 2, 3, 4], [1, 2, 3, 4] ]
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Generalize Creating a 2D List
•Create a function that returns a 2D list with width 

cols and height rows
ØInitialize each element in (sub) list to 0
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def create2DList(rows, cols):
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Generalize Creating a 2D List
•Create a function that returns a 2D list with width 

cols and height rows
ØInitialize each element in (sub) list to 0
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def create2DList(rows, cols):
twodlist = [ ]
# for each row
for rowPos in range( rows ):

row = [ ]
# for each column, in each row
for colPos in range( cols ):

row.append(0)
twodlist.append(row)

return twodlist
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Generalize Creating a 2D List
•Create a function that returns a 2D list with width 

cols and height rows
ØInitialize each element in (sub) list to 0
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def create2DList(rows, cols):
twodlist = [ ]
# for each row
for rowPos in range( rows ):

row = [ ]
# for each column, in each row
for colPos in range( cols ):

row.append(0)
twodlist.append(row)

return twodlist

Change here to choose 
elements put into the list

22
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Example: Creating 2D List – 3 rows, 4 cols
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list
twodList

list

row = []
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Example: Creating 2D List – 3 rows, 4 cols
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list
twodList

list

0 0 0 0

row For every column, append 0

24
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Example: Creating 2D List – 3 rows, 4 cols
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twodList[0]

list
twodList

list

0 0 0 0

row

Append row to twodlist

For every column, append 0

25

Example: Creating 2D List – 3 rows, 4 cols
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twodList[0]

list
twodList

list

list

0 0 0 0

row = [ ]

26
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Example: Creating 2D List – 3 rows, 4 cols
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twodList[0]

list
twodList

list

list

0 0 0 0

0 0 0 0

row For every column, append 0
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twodList[1]

Example: Creating 2D List – 3 rows, 4 cols

Apr 3, 2023 Sprenkle - CSCI111 28

twodList[0]

list
twodList

list

list

0 0 0 0

0 0 0 0

Append row to twodList

row

28
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twodList[2]

twodList[1]

Example: Creating 2D List – 3 rows, 4 cols
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twodList[0]

list
twodList

list

list

list

0 0 0 0

0 0 0 0

0 0 0 0
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Generalize Creating a 2D List
•Create a function that returns a 2D list with width 

cols and height rows
ØInitialize each element in (sub) list to 0
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def create2DList(rows, cols):
twodlist = [ ]
# for each row
for rowPos in range( rows ):

row = [ ]
# for each column, in each row
for colPos in range( cols ):

row.append(0)
twodlist.append(row)

return twodlist

Change here to choose 
elements put into the list

30
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Incorrect: Creating a 2D List
•The following code won’t work.  Why?
•Example output from using this function to create 

a 2D list is on the right
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def noCreate2DList(rows, cols):
twodlist = [ ]
row = [ ]

for col in range( cols ):
row.append(0)

for r in range( rows ):
twodlist.append(row)

return twodlist twod_exercises.py

Incorrect Matrix Creation:
------------------------------
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Assigning matrix[1][2] = 3

Result: 
[[0, 0, 3, 0], [0, 0, 3, 0], [0, 0, 3, 0]]

31

All Rows of 2D List Point at 
Same Block of Memory
•Each “row” points to the same list in memory
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twodlist

twodlist[0]

twodlist[1]

twodlist[2]

0 0 0 0

row

# create row …
twodlist.append(row)
twodlist.append(row)
twodlist.append(row)

32
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All Rows of 2D List Point at 
Same Block of Memory

•Each “row” points to the same list in memory
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twodlist

twodlist[0]

twodlist[1]

twodlist[2]

0 0 3 0

row

twodlist[1][2] = 3
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Graphical Representation of 2D Lists
•Module: csplot
•Allows you to visualize your 2D list

ØNumbers are represented by different colors
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import csplot
…
# create 2D list…
twodlist=[ [0,0,0], [1,1,1], [2,2,2] ]
# display list graphically
csplot.show(twodlist)

34
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Graphical Representation of 2D Lists
•Can assign colors to numbers
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import csplot
…
# create 2D list…
twodlist=[ [0,0,0], [1,1,1], [2,2,2] ]
# create dictionary of numbers to color rep
numToColor = {0:"purple", 1:"blue", 2:"green"}
csplot.show(twodlist, numToColor)
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Graphical Representation of 2D Lists
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matrix = [[0,0,0], [1,1,1], [0,1,2]]

What values map to 
which colors by default?

Other observations?

36
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Graphical Representation of 2D Lists
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matrix = [[0,0,0], [1,1,1], [0,1,2]]

What values map to 
which colors by default?

•Note representation of 
list/rows is not how we’ve 
been visualizing

37

Game Board for Connect Four
•6 rows, 7 columns board
•Players alternate dropping red/black checker into 

slot/column
•Player wins when have four checkers in a row 

vertically, horizontally, or diagonally
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How do we represent the board as a 2D list, 
using a graphical representation?

38



20

Representing Connect Four Game Board
•Using a 2D list
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Number Meaning Color

0 Free Yellow

1 Player 1 Red

2 Player 2 Black
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Representing Connect Four Game Board
•Using a 2D list
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Number Meaning Color

0 Free Yellow

1 Player 1 Red
2 Player 2 Black

Row 0

Row 5

40
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ConnectFour Class
•What is the data associated with the class?
•What methods should we implement?
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ConnectFour Class
•Data

ØConstants
ØBoard
•6 rows, 7 columns
•All spaces FREE to start

•Methods
ØConstructor
ØDisplay the board
ØPlay the game
ØGet input/move from user
ØCheck if valid move
ØMake move
ØCheck if win
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ConnectFour Constants
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class ConnectFour:
""" Class representing the game Connect Four. """

# Represent different values on the board
FREE = 0
PLAYER1 = 1
PLAYER2 = 2

# Represent the dimensions of the board
ROWS = 6
COLS = 7

To reference class’s constants, use ConnectFour.CONSTANT
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ConnectFour Class
•Implementation of play the game method

ØRepeat: 
• Get input/move from user

(depending on whose 
turn it is)

• Make move 
• Display board
• Check if win
• Change player
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def play(self):
won = False
player = ConnectFour.PLAYER1

while not won:
print("Player {:d}'s move".format(player))
if player == ConnectFour.PLAYER1:

col = self._userChooseColumn()
else: # computer is player 2

# pause because otherwise move happens too    
# quickly and looks like an error
sleep(.75)
col = self._computerChooseColumn()

row = self.makeMove(player, col)
self.showBoard()
won = self._isWon(row, col)

# alternate players
player = player % 2 + 1

44
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Connect Four (C4): Making moves
•User clicks on a column
Ø“Checker” is filled in at that column
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# gets the column where user clicked
col = csplot.sqinput()

def _userChooseColumn(self):
"""Allow the user to pick a column."""
col = csplot.sqinput()
validMove = self._isValidMove(col)
while not validMove:

print("NOT A VALID MOVE.")
print("PLEASE SELECT AGAIN.")
print()
col = csplot.sqinput()
validMove = self._isValidMove(col)

return col
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Problem: C4 - Valid move?
•Need to enforce valid moves
ØIn physical game, run out of spaces for checkers if not 

a valid move

•How can we determine if a move is valid?
ØHow do we know when a move is not valid?

Apr 3, 2023 Sprenkle - CSCI111 46

46



24

Problem: C4 - Valid move?
•Solution: check the “top” spot
ØIf the spot is FREE, then it’s a valid move
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Problem: C4 - Making a Move
•The player clicks on a column, meaning that’s 

where the player wants to put a checker
•How do we update the board?

Apr 3, 2023 Sprenkle - CSCI111 48

48



25

Looking Ahead
•Lab 11 – Tomorrow
ØPre lab: Exception Handling
•review nested lists, classes

ØReview implementation of binary search

•Broader Issue: Data – Friday
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