
1

Objectives
•Two-dimensional lists

Apr 3, 2023 Sprenkle - CSCI111 1

1

Review
• What is exception handling?

Ø How do we implement it in our
code? What is the structure?

Ø What are best practices?

• What are the two types of search
we discussed?
Ø How do they work?
Ø How do they compare?
Ø What are the tradeoffs between

using linear search and binary
search?

• Lists (for today’s lesson…)
Ø How do we find the number of

elements in the list?
Ø How can we find the value of the

third element in the list?

Apr 3, 2023 Sprenkle - CSCI111 2

2

2

Review: Handling Exceptions
•Using try/except statements
•Syntax:

•Example:

Apr 3, 2023 Sprenkle - CSCI111 3

try:
<body>

except [<errorType>] :
<handler>

try:
age = int(input("Enter your age: "))
currentyear = int(input("Enter the current year: "))

except:
print("Error: Your input was not in the correct form.")
print("Enter integers for your age and the current year")
sys.exit(1)

yearborn.py

Optional: use this to handle
specific error types appropriately

Typical/normal behavior

Handle exception

3

Review: Best Practices
•Prevent errors as best you can
ØExample: use if statements to verify data

•For errors you can’t prevent, handle them!
ØExample: We can check if a file exists before trying to

read it BUT between the check and actually reading
the file, the file could be deleted from the system!

Apr 3, 2023 Sprenkle - CSCI111 4

4

3

Review: Search Using in Review
•Iterates through a list, checking if the element is

found
•Known as linear search
•Implementation:

Apr 3, 2023 Sprenkle - CSCI111 5

def linearSearch(searchlist, key):
for elem in searchlist:

if elem == key:
return True

return False

8 5 3 7

0 1 2 3
value

pos

5

Alternative: Like index method
•Iterates through positions in a list, checking if the

element is found
•Still known as linear search
•Implementation:

Apr 3, 2023 Sprenkle - CSCI111 6

def linearSearch(searchlist, key):
for pos in len(range(searchlist)):

if searchlist[pos] == key:
return pos

return -1

6

4

Review: Linear Search
•Overview: Iterates through a list, checking if the

element is found
•Benefits:
ØWorks on any list

•Drawbacks:
ØSlow, on average: needs to check each element of list

if the element is not in the list

Apr 3, 2023 Sprenkle - CSCI111 7

7

Review: Binary Search:
Eliminate Half the Possibilities
• Repeat until find value (or looked through all values)

ØGuess middle value of possibilities
• (not middle position)

ØIf match, found!
ØOtherwise, find out too high or too low
ØModify your possibilities
•Eliminate the possibilities from your number and

higher/lower, as appropriate
• Benefits: faster than linear search
• Drawbacks: requires sorted list

Apr 3, 2023 Sprenkle - CSCI111 8

8

5

2D LISTS

Apr 3, 2023 Sprenkle - CSCI111 9

9

Lists
• We’ve used lists that contain

ØIntegers
ØStrings
ØCards (Deck class)
ØPersons (your Person class)

• We discussed that lists can contain multiple types of
objects within the same list
ØWheel of Fortune: [“Bankrupt”, 250, 350, …]

• Lists can contain any type of object
ØEven LISTS!

Apr 3, 2023 Sprenkle - CSCI111 10

10

6

Review of Regular (1D) Lists

Apr 3, 2023 Sprenkle - CSCI111 11

onedlist = [7, -1, 23]

Elements in the list

•How do we find the number of elements in the list?
•How can we find the value of the third element in the list?

11

Review of Regular (1D) Lists

•len(onedlist) is 3
•onedlist[2] is 23

Apr 3, 2023 Sprenkle - CSCI111 12

onedlist = [7, -1, 23]

Elements in the list

12

7

list
twod[2]

list
twod[1]

A List of Lists: 2-Dimensional List

Apr 3, 2023 Sprenkle - CSCI111 13

twod

twod = [[1,2,3,4], [5,6], [7,8,9,10,11]]

list
twod[0]

twod[0] twod[1] twod[2]

1st dimension

13

A List of Lists: 2-Dimensional list

• “Rows” within 2-dimensional list do not need to be the same
length

• However, it’s often easier if they’re the same length!
Ø We’ll focus on “rectangular” 2D lists

Apr 3, 2023 Sprenkle - CSCI111 14

twod = [[1,2,3,4], [5,6], [7,8,9,10,11]]

list
twod[2]

list
twod[1]

list
twod[0]

twod

14

8

Handling Rectangular Lists

• What does each component of twod[1][2] mean?
• How can we programmatically determine the number of rows in
twod? The number of columns in a given row?
Apr 3, 2023 Sprenkle - CSCI111 15

list

list

list

twod[0]

twod[1]

twod[2]
twod[2][3]

twod[0][0]

twod[1][2] = 42twod

15

Handling Rectangular Lists

• How can we programmatically determine the number of rows in twod?
Ø rows = len(twod)

• The number of columns in a given row?
Ø cols = len(twod[whichRow])

Apr 3, 2023 Sprenkle - CSCI111 16

list

list

list

twod[0]

twod[1]

twod[2]

42

twod[1][2] = 42

twod[2][3]

twod[0][0]

Row pos
Col pos

2-d list var

Assignment

twod

16

9

def mystery(twod):
""" ‘run’ this on twod, at right """
for row in range(len(twod)):

for col in range(len(twod[row])):
if row == col:

twod[row][col] = 42
else:

twod[row][col] += 1

2D List Practice
Starting with the 2D list twod shown,

what are the values in twod after
running this code?

Apr 3, 2023 Sprenkle - CSCI111 17

1 2 3 4
5 6 7 8
9 10 11 12

twod Before

twod After

row 0
row 1

row 2

col 0 col 1 col 2 col 3

mystery.py
17

def mystery(twod):
""" ‘run’ this on twod, at right """
for row in range(len(twod)):

for col in range(len(twod[row])):
if row == col:

twod[row][col] = 42
else:

twod[row][col] += 1

2D List Practice
Starting with the 2D list twod shown,

what are the values in twod after
running this code?

Apr 3, 2023 Sprenkle - CSCI111 18

1 2 3 4
5 6 7 8
9 10 11 12

twod Before

twod After

row 0
row 1

row 2

col 0 col 1 col 2 col 3

mystery.py

42 3 4 5

6 42 8 9

10 11 42 13

18

10

Example Process for Creating a 2D List
twod = []

• Create a row of the list, e.g.,
row = [1, 2, 3, 4] or row = list(range(1,5))
or row = [0] * 4 or …

• Then append that row to the list
twod.append(row)
print(twod)

• [[1, 2, 3, 4]]

• Repeat
row = list(range(1,5))
twod.append(row)
print(twod)

• [[1, 2, 3, 4], [1, 2, 3, 4]]
Apr 3, 2023 Sprenkle - CSCI111 19

19

Generalize Creating a 2D List
•Create a function that returns a 2D list with width

cols and height rows
ØInitialize each element in (sub) list to 0

Apr 3, 2023 Sprenkle - CSCI111 20

def create2DList(rows, cols):

20

11

Generalize Creating a 2D List
•Create a function that returns a 2D list with width

cols and height rows
ØInitialize each element in (sub) list to 0

Apr 3, 2023 Sprenkle - CSCI111 21

def create2DList(rows, cols):
twodlist = []
for each row
for rowPos in range(rows):

row = []
for each column, in each row
for colPos in range(cols):

row.append(0)
twodlist.append(row)

return twodlist

21

Generalize Creating a 2D List
•Create a function that returns a 2D list with width

cols and height rows
ØInitialize each element in (sub) list to 0

Apr 3, 2023 Sprenkle - CSCI111 22

def create2DList(rows, cols):
twodlist = []
for each row
for rowPos in range(rows):

row = []
for each column, in each row
for colPos in range(cols):

row.append(0)
twodlist.append(row)

return twodlist

Change here to choose
elements put into the list

22

12

Example: Creating 2D List – 3 rows, 4 cols

Apr 3, 2023 Sprenkle - CSCI111 23

list
twodList

list

row = []

23

Example: Creating 2D List – 3 rows, 4 cols

Apr 3, 2023 Sprenkle - CSCI111 24

list
twodList

list

0 0 0 0

row For every column, append 0

24

13

Example: Creating 2D List – 3 rows, 4 cols

Apr 3, 2023 Sprenkle - CSCI111 25

twodList[0]

list
twodList

list

0 0 0 0

row

Append row to twodlist

For every column, append 0

25

Example: Creating 2D List – 3 rows, 4 cols

Apr 3, 2023 Sprenkle - CSCI111 26

twodList[0]

list
twodList

list

list

0 0 0 0

row = []

26

14

Example: Creating 2D List – 3 rows, 4 cols

Apr 3, 2023 Sprenkle - CSCI111 27

twodList[0]

list
twodList

list

list

0 0 0 0

0 0 0 0

row For every column, append 0

27

twodList[1]

Example: Creating 2D List – 3 rows, 4 cols

Apr 3, 2023 Sprenkle - CSCI111 28

twodList[0]

list
twodList

list

list

0 0 0 0

0 0 0 0

Append row to twodList

row

28

15

twodList[2]

twodList[1]

Example: Creating 2D List – 3 rows, 4 cols

Apr 3, 2023 Sprenkle - CSCI111 29

twodList[0]

list
twodList

list

list

list

0 0 0 0

0 0 0 0

0 0 0 0

29

Generalize Creating a 2D List
•Create a function that returns a 2D list with width

cols and height rows
ØInitialize each element in (sub) list to 0

Apr 3, 2023 Sprenkle - CSCI111 30

def create2DList(rows, cols):
twodlist = []
for each row
for rowPos in range(rows):

row = []
for each column, in each row
for colPos in range(cols):

row.append(0)
twodlist.append(row)

return twodlist

Change here to choose
elements put into the list

30

16

Incorrect: Creating a 2D List
•The following code won’t work. Why?
•Example output from using this function to create

a 2D list is on the right

Apr 3, 2023 Sprenkle - CSCI111 31

def noCreate2DList(rows, cols):
twodlist = []
row = []

for col in range(cols):
row.append(0)

for r in range(rows):
twodlist.append(row)

return twodlist twod_exercises.py

Incorrect Matrix Creation:

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Assigning matrix[1][2] = 3

Result:
[[0, 0, 3, 0], [0, 0, 3, 0], [0, 0, 3, 0]]

31

All Rows of 2D List Point at
Same Block of Memory
•Each “row” points to the same list in memory

Apr 3, 2023 Sprenkle - CSCI111 32

twodlist

twodlist[0]

twodlist[1]

twodlist[2]

0 0 0 0

row

create row …
twodlist.append(row)
twodlist.append(row)
twodlist.append(row)

32

17

All Rows of 2D List Point at
Same Block of Memory

•Each “row” points to the same list in memory

Apr 3, 2023 Sprenkle - CSCI111 33

twodlist

twodlist[0]

twodlist[1]

twodlist[2]

0 0 3 0

row

twodlist[1][2] = 3

33

Graphical Representation of 2D Lists
•Module: csplot
•Allows you to visualize your 2D list

ØNumbers are represented by different colors

Apr 3, 2023 Sprenkle - CSCI111 34

import csplot
…
create 2D list…
twodlist=[[0,0,0], [1,1,1], [2,2,2]]
display list graphically
csplot.show(twodlist)

34

18

Graphical Representation of 2D Lists
•Can assign colors to numbers

Apr 3, 2023 Sprenkle - CSCI111 35

import csplot
…
create 2D list…
twodlist=[[0,0,0], [1,1,1], [2,2,2]]
create dictionary of numbers to color rep
numToColor = {0:"purple", 1:"blue", 2:"green"}
csplot.show(twodlist, numToColor)

35

Graphical Representation of 2D Lists

Apr 3, 2023 Sprenkle - CSCI111 36

matrix = [[0,0,0], [1,1,1], [0,1,2]]

What values map to
which colors by default?

Other observations?

36

19

Graphical Representation of 2D Lists

Apr 3, 2023 Sprenkle - CSCI111 37

matrix = [[0,0,0], [1,1,1], [0,1,2]]

What values map to
which colors by default?

•Note representation of
list/rows is not how we’ve
been visualizing

37

Game Board for Connect Four
•6 rows, 7 columns board
•Players alternate dropping red/black checker into

slot/column
•Player wins when have four checkers in a row

vertically, horizontally, or diagonally

Apr 3, 2023 Sprenkle - CSCI111 38

How do we represent the board as a 2D list,
using a graphical representation?

38

20

Representing Connect Four Game Board
•Using a 2D list

Apr 3, 2023 Sprenkle - CSCI111 39

Number Meaning Color

0 Free Yellow

1 Player 1 Red

2 Player 2 Black

39

Representing Connect Four Game Board
•Using a 2D list

Apr 3, 2023 Sprenkle - CSCI111 40

Number Meaning Color

0 Free Yellow

1 Player 1 Red
2 Player 2 Black

Row 0

Row 5

40

21

ConnectFour Class
•What is the data associated with the class?
•What methods should we implement?

Apr 3, 2023 Sprenkle - CSCI111 41

41

ConnectFour Class
•Data

ØConstants
ØBoard
•6 rows, 7 columns
•All spaces FREE to start

•Methods
ØConstructor
ØDisplay the board
ØPlay the game
ØGet input/move from user
ØCheck if valid move
ØMake move
ØCheck if win

Apr 3, 2023 Sprenkle - CSCI111 42

42

22

ConnectFour Constants

Apr 3, 2023 Sprenkle - CSCI111 43

class ConnectFour:
""" Class representing the game Connect Four. """

Represent different values on the board
FREE = 0
PLAYER1 = 1
PLAYER2 = 2

Represent the dimensions of the board
ROWS = 6
COLS = 7

To reference class’s constants, use ConnectFour.CONSTANT

43

ConnectFour Class
•Implementation of play the game method

ØRepeat:
• Get input/move from user

(depending on whose
turn it is)

• Make move
• Display board
• Check if win
• Change player

Apr 3, 2023 Sprenkle - CSCI111 44

def play(self):
won = False
player = ConnectFour.PLAYER1

while not won:
print("Player {:d}'s move".format(player))
if player == ConnectFour.PLAYER1:

col = self._userChooseColumn()
else: # computer is player 2

pause because otherwise move happens too
quickly and looks like an error
sleep(.75)
col = self._computerChooseColumn()

row = self.makeMove(player, col)
self.showBoard()
won = self._isWon(row, col)

alternate players
player = player % 2 + 1

44

23

Connect Four (C4): Making moves
•User clicks on a column
Ø“Checker” is filled in at that column

Apr 3, 2023 Sprenkle - CSCI111 45

gets the column where user clicked
col = csplot.sqinput()

def _userChooseColumn(self):
"""Allow the user to pick a column."""
col = csplot.sqinput()
validMove = self._isValidMove(col)
while not validMove:

print("NOT A VALID MOVE.")
print("PLEASE SELECT AGAIN.")
print()
col = csplot.sqinput()
validMove = self._isValidMove(col)

return col

45

Problem: C4 - Valid move?
•Need to enforce valid moves
ØIn physical game, run out of spaces for checkers if not

a valid move

•How can we determine if a move is valid?
ØHow do we know when a move is not valid?

Apr 3, 2023 Sprenkle - CSCI111 46

46

24

Problem: C4 - Valid move?
•Solution: check the “top” spot
ØIf the spot is FREE, then it’s a valid move

Apr 3, 2023 Sprenkle - CSCI111 47

47

Problem: C4 - Making a Move
•The player clicks on a column, meaning that’s

where the player wants to put a checker
•How do we update the board?

Apr 3, 2023 Sprenkle - CSCI111 48

48

25

Looking Ahead
•Lab 11 – Tomorrow
ØPre lab: Exception Handling
•review nested lists, classes

ØReview implementation of binary search

•Broader Issue: Data – Friday

Apr 3, 2023 Sprenkle - CSCI111 49

49

