
1

Lab 3
•Review

ØLab 2
ØLoops
ØFunctions

Jan 31, 2023 Sprenkle - CSCI111 1

1

Lab 2 Feedback
• Getting a little tougher in grading
• Paying more attention to style (e.g., variable names), 

efficiency, readability, good output
• Need high-level descriptions in comments
• More strict on adhering to problem specification

ØFollow instructions
• Demonstrate program more than once if gets input from 

user or outcome changes when run again
ØFind errors before I do!

Jan 31, 2023 Sprenkle - CSCI111 2

2



2

Testing Discussion
•Consider what inputs could allow you to see different 

behaviors
ØExample: If only one person splitting the bill
ØWhat are good test cases for the greatest hits problem?

•Start with at least one test case that is easy to validate

Jan 31, 2023 Sprenkle - CSCI111 3

3

Starting to Know Multiple Ways to Do Same Thing

•Favor the solution with least “conceptual complexity”
ØApproximation: requires fewer characters in a line of code

Jan 31, 2023 Sprenkle - CSCI111 4

print("The tip is ", total_bill*(percent_tip/100), " dollars")
print("The total cost is ", total_bill + (total_bill*(percent_tip/100)), 
" dollars")
print("The total cost per person is ", (total_bill+ 
(total_bill*(percent_tip/100)))/number_of_people, " dollars")

You should be able to understand this code, relatively easily, 
but it takes time to parse it and know what is happening.

4



3

Starting to Know Multiple Ways to Do Same Thing

•Favor the solution with least “conceptual complexity”
ØApproximation: requires fewer characters in a line of code

Jan 31, 2023 Sprenkle - CSCI111 5

print("The tip is ", total_bill*(percent_tip/100), " dollars")
print("The total cost is ", total_bill + (total_bill*(percent_tip/100)), 
" dollars")
print("The total cost per person is ", (total_bill+ 
(total_bill*(percent_tip/100)))/number_of_people, " dollars")

tip = total_bill*(percent_tip/100)
print("The tip is", tip, "dollars")

totalCost = total_bill+tip
print("The total cost is", cost_total, "dollars")

cost_per_person = totalCost/number_people
print("The cost per person is", cost_per_person, "dollars")

More lines of code but 
each line is simpler

5

Starting to Know Multiple Ways to Do Same Thing

•Favor the solution with least “conceptual complexity”
ØApproximation: requires fewer characters in a line of code

Jan 31, 2023 Sprenkle - CSCI111 6

tip = total_bill*(percent_tip/100)
totalCost = total_bill+tip
cost_per_person = totalCost/number_people

print("The tip is", tip, "dollars")
print("The total cost is", totalCost, "dollars")
print("The cost per person is", cost_per_person, "dollars")

Even better because it 
groups computation 
and printing together

print("The tip is ", total_bill*(percent_tip/100), " dollars")
print("The total cost is ", total_bill + (total_bill*(percent_tip/100)), 
" dollars")
print("The total cost per person is ", (total_bill+ 
(total_bill*(percent_tip/100)))/number_of_people, " dollars")

6



4

Variable Naming
•Consider which variable name is better:

Jan 31, 2023 Sprenkle - CSCI111 7

circle = Circle(midPoint, 50) 

bodyBottom = Circle(midPoint, 50) 

7

Coloring an Object
•Consider which statement is more easily understood:

vs

Jan 31, 2023 Sprenkle - CSCI111 8

circle.setFill("black")

circle.setFill(rgb_color(0, 0, 0))

8



5

Takeaways
•Use variable names that are descriptive

ØCode is closer to English, more easily understood

•Keep code “simple” à shorter lines of code, color 
names

Jan 31, 2023 Sprenkle - CSCI111 9

9

Debugging Practices
•Larger, more complex programs à harder to debug
•Debugging practices

ØTrace through the program as if you are the computer
•Similar to some exam problems

ØUse print statements to display variables’ values
ØOr, use Python visualizer to show how variables’ values 

change

Jan 31, 2023 Sprenkle - CSCI111 10

10



6

Review
•How do we make code repeat?
•How do we use the range function?
•What questions should we ask when solving a problem 

that requires repetition?
ØThese questions help guide our solution

•What is the accumulator design pattern?
•How do we indicate that a variable will not change 

during the lifetime of the program?
Jan 31, 2023 Sprenkle - CSCI111 11

Get ready for the day:
Retrieve handouts, Go to slides/examples

11

Review: Accumulator Design Pattern
1. Initialize accumulator variable
2. Loop until done

ØUpdate the value of the accumulator
3.Display result

Jan 31, 2023 Sprenkle - CSCI111 12

Recall our example of adding up the user inputs…

12



7

Review: Designing for Change: Constants
•Special variables whose values are defined once and 

never changed
ØBy convention, not enforced by interpreter

•By convention
ØA constant’s name is all caps
ØTypically defined at top of program à easy to find, change

•Examples: 
ØNUMBER_OF_INPUTS = 5

Jan 31, 2023 Sprenkle - CSCI111 13

13

Review
• What are some examples of built-in functions?
• How can we access functions from a module?
• How do we call functions?

ØBuilt-in functions?
ØFunctions from modules?

• What functionality does the random module provide?
ØBe specific

• How do we animate?
ØHow can we make the animation move faster? Slower?

Jan 31, 2023 Sprenkle - CSCI111 14

14



8

Review: More Examples of Built-in Functions

Jan 31, 2023 Sprenkle - CSCI111 15

Function Signature Description
round(x[,n]) Return the float x rounded to n

digits after the decimal point
If no n, round to nearest int

abs(x) Returns the absolute value of x

type(x) Return the type of x

pow(x, y) Returns xy

15

Animation
•Use combinations of the method move and the 

function sleep
ØNeed to sleep so that humans can see the graphics moving
ØOtherwise, computer processes the moves too fast!

•sleep is part of the time module
Øtakes a float representing seconds and pauses for that 

amount of time

Jan 31, 2023 Sprenkle - CSCI111 16animate.py
16



9

Animate Circle Shift Reflection
•Broke the problem down

1. Move a circle to the position clicked by the user
2. Animate movement
•Break the movement into chunks
•Repeatedly, move one chunk, sleep

Jan 31, 2023 Sprenkle - CSCI111 17circleShiftAnim.py

Course Objective: Learn to break down problems

17

Some random Functions
•random()

ØReturns the next random floating point number in the range 
[0.0, 1.0)

•randint(a, b)
ØReturn a random integer N such that a ≤ N ≤ b

Jan 31, 2023 Sprenkle - CSCI111 18

import random

#random.seed(1)     # module.function()

for x in range(10):
print(random.random()) random_test.py

18



10

Computational Thinking
• Learning how to think

Ø Learning how to learn
Ø Learning how to solve problems

• Process
ØPractice!

• Review slides and examples after class
Ø Run them in Python visualizer

Ø Finding answers
• Examples, handouts, textbook, directions, links in directions, previous 

labs, ...
ØAsking questions

• We talk you through the process
Jan 31, 2023 Sprenkle - CSCI111 19

Drilling good practice early on with
smaller problems

so that you are well-poised 
to handle bigger problems!

19

Lab 3 Overview
•Practice Python programming

ØLoops
ØConstants
ØFunctions
ØAnimation with Graphics API

Jan 31, 2023 Sprenkle - CSCI111 20

Animation Inspiration

20


