
1

Lab 4
•Review Lab 3

ØRun Animations!
•Function review

Feb 7, 2023 Sprenkle - CSCI111 1

1

Lab 3
• Iterative Fibonacci Sequence has been a question on

several students’ internship or job interviews

Feb 7, 2023 Sprenkle - CSCI111 2

2

2

Lab 3 Feedback
•Continuing to get tougher in grading

ØPaying more attention to style (e.g., variable names),
efficiency, readability, good output

ØHigh-level descriptions
ØMore strict on adhering to problem specification
ØConstants
ØDemonstrate program more than once if gets input from

user or outcome changes when run again
•Find errors before I do!

Feb 7, 2023 Sprenkle - CSCI111 3

3

Program Organization

Feb 7, 2023 Sprenkle - CSCI111 4

high-level description
author name

import statements

CONSTANT_DEFNS = …

program_statements ...
program_statements ...
program_statements …

4

3

Program Organization

Feb 7, 2023 Sprenkle - CSCI111 5

high-level description
author name

import statements

CONSTANT_DEFNS = …

def main():
statements…
statements...

def otherfunction():
statement...

5

Lab 3 Feedback: Common Issues

Feb 7, 2023 Sprenkle - CSCI111 6

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 15):
operand1=12
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is more efficient (i.e., requires the computer to do less “work”)?

6

4

Lab 3 Feedback: Common Issues

Feb 7, 2023 Sprenkle - CSCI111 7

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 15):
operand1=12
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

çAdditional assignment each time through loop

Which solution is more efficient (i.e., requires the computer to do less “work”)?

7

Lab 3 Feedback: Common Issues

Feb 7, 2023 Sprenkle - CSCI111 8

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

operand1=12
operand2=0
for x in range(14):

operand2 = x + 1
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

8

5

Lab 3 Feedback: Common Issues

Feb 7, 2023 Sprenkle - CSCI111 9

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

operand1=12
operand2=0
for x in range(14):

operand2 = x + 1
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

More code makes
solution more difficult

to understand

9

Lab 3 Feedback: Common Issues

Feb 7, 2023 Sprenkle - CSCI111 10

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

operand1=12
for x in range(1, 15):

operand2 = x
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

10

6

Lab 3 Feedback: Common Issues

Feb 7, 2023 Sprenkle - CSCI111 11

operand1=12
for operand2 in range(1, 15):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

operand1=12
for x in range(1, 15):

operand2 = x
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

More code makes
solution more difficult

to understand

11

Animation Feedback
• If moving multiple objects together

ØMove all the objects, then sleep
ØOtherwise, animation looks choppy

•Could use a list with the for loop, as discussed in
several sections in the textbook
ØSimplifies and reduces code

Feb 7, 2023 Sprenkle - CSCI111 12

for object in [myObj1, myObj2, myObj3]:
object.move()

sleep(.001)

12

7

Run Animations

Feb 7, 2023 Sprenkle - CSCI111 13

13

Review
• What are characteristics of a good function?
• How can we programmatically test functions?
• What are two development processes we have discussed?
• What happens when a function reaches a return

statement?
• Synthesis: Where do variables implicitly get assigned a

value?
ØProvide examples where a variable’s value is set, but there is no

explicit assignment statement?

Feb 7, 2023 Sprenkle - CSCI111 14

14

8

Review: Writing a “Good” Function
• Should be an “intuitive chunk”

ØDoesn’t do too much or too little
ØIf does too much, try to break into more functions

• Should be reusable
• Should have an “action” name
• Should have a comment that tells what the function does

Feb 7, 2023 Sprenkle - CSCI111 15

15

Review: Writing Comments for Functions
•Good style: Each function must have a comment

ØDescribes functionality at a high-level
ØInclude the precondition, postcondition
ØDescribe the parameters (their types) and the result of

calling the function (precondition and postcondition may
cover this)

Feb 7, 2023 Sprenkle - CSCI111 16

16

9

Review: Writing Comments for Functions
• Include the function’s pre- and post- conditions
•Precondition: Things that must be true for function to

work correctly
ØE.g., num must be even

•Postcondition: Things that will be true when function
finishes (if precondition is true)
ØE.g., the returned value is the max

Feb 7, 2023 Sprenkle - CSCI111 17

17

Refactoring:
Converting Functionality into Functions
1. Identify functionality that should be put into a function

Ø What should the function do?
Ø What is the function’s input?
Ø What is the function’s output (i.e., what is returned)?

2. Define the function
3. Test the function programmatically

Ø Comment out the other code temporarily
4. Call the function where appropriate
5. Create a main function that contains the “driver” for your program

Ø Put at top of program
6. Call main at bottom of program
7. Write documentation for function

Feb 7, 2023 Sprenkle - CSCI111 18

18

10

Refactoring In Lab
•A little different than I showed you in class
•Refactoring in-line (modifying the code) is a little more

sophisticated than you might be ready for
• Instead, copy code from the original file to the new file

Feb 7, 2023 Sprenkle - CSCI111 19

Code to be
refactored

New Program
file

19

Review: Bottom-Up Development

•Use the function in context/
call the function

•Define a function
ØDocument
ØTest the function

Feb 7, 2023 Sprenkle - CSCI111 20

Function

Function

1

2

20

11

test module’s testEqual function
•Example from yesterday

Feb 7, 2023 Sprenkle - CSCI111 21

def testWinPercentage():
test.testEqual(calculateWinPercentage(0, 1), 0)
test.testEqual(calculateWinPercentage(2, 2), .5)
test.testEqual(calculateWinPercentage(3, 7), .3)
test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()

After confirming that the function works…

Could add a parameter for the
number of decimal places of precision

21

test module’s testEqual function
•Example from yesterday

Feb 7, 2023 Sprenkle - CSCI111 22

def testWinPercentage():
test.testEqual(calculateWinPercentage(0, 1), 0)
test.testEqual(calculateWinPercentage(2, 2), .5)
test.testEqual(calculateWinPercentage(3, 7), .3)
test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()
main()

Comment out call to test function.
Call main.

22

12

Docstring on Function

Feb 7, 2023 Sprenkle - CSCI111 23

def calculateWinPercentage(wins, losses):
"""
Calculates and returns a win percentage, based on the given wins
and losses.
Parameters:
- wins: a non-negative integer representing the number of wins
- losses: a non-negative integer representing the number of losses
Pre: either wins or losses must be greater than 0 or will throw a
divide by zero error
Post: returns the win percentage (between 0 and 1, inclusive)
"""
…

Good docstring because
Ø Describes parameters
Ø Describes what is return (is it a %?)
Ø Describes error cases

23

TOP-DOWN DEVELOPMENT
Development approach:

Feb 7, 2023 Sprenkle - CSCI111 24

24

13

Top-Down Development
• I have a problem
•But, that problem can be broken into smaller problems

•Solution:
ØProblems à functions!
ØDivide and Conquer!

Feb 7, 2023 Sprenkle - CSCI111 25

25

Example: Top-Down Development
• I want to calculate and then display a team’s win/loss

percentage based on user input

Feb 7, 2023 Sprenkle - CSCI111 26

26

14

Example: Top-Down Development
• I want to calculate and then display a team’s win/loss

percentage based on user input
•Algorithm:

ØGet user input for number of wins and losses

ØCalculate the win percentage

ØDisplay the results
Feb 7, 2023 Sprenkle - CSCI111 27

27

Example: Top-Down Development –
Design: Identify Functions
• I want to calculate and then display a team’s win/loss

percentage based on user input
•Algorithm:

ØGet user input for number of wins and losses

ØCalculate the win percentage

ØDisplay the results
Feb 7, 2023 Sprenkle - CSCI111 28

main

calculateWinPercentage

Think about how the function
will be used firstà API!

28

15

Example: Top-Down Development –
Starting Implementation…

Feb 7, 2023 Sprenkle - CSCI111 29

def main():
get user input

winPct = calculateWinPercentage(wins, losses)

display results

def calculateWinPercentage(numWins, numLosses):
"""
Given the number of wins and losses,
calculates and returns the win percentage
…
"""
…

main()

Think about how the function
will be used firstà API!

29

Summary: Development Approaches
•There are several development approaches
•Not mutually exclusive
•Often will switch between them, depending on

circumstances
•As programs grow in size, there is no “one way” to

write code
ØBut there may be better ways to make progress
ØIf you’re stuck, step back and reassess your approach

Feb 7, 2023 Sprenkle - CSCI111 30

30

16

Debugging
•When you’re debugging, a good mantra is

Feb 7, 2023 Sprenkle - CSCI111 31

“I think I'm about to learn something”

31

Lab 4 Overview
•Calling functions defined in the same program
•Refactoring code
•Modifying function definitions
•Testing functions
•Creating a module
•Writing a program with a function from scratch

Feb 7, 2023 Sprenkle - CSCI111 32

32

