
1

Reviewing Lab 10
•Created two classes

ØUsed one class within another class
ØTested them
ØExample of a backend to a real application

•Could add a different user interface
•“Good judgment comes from experience”

ØTest methods after writing method
ØRemember your data types
ØRefer to the data type’s API

Apr 4, 2023 Sprenkle - CSCI111 1

Text UI

Backend

Data Store
(files)

Graphical UI

1

Lab 10 Feedback
•Problem solving bonanza!

ØSolving lots of different small problems in a variety of ways
•Use methods you’ve already written

ØExample: use addPerson in addPeople
ØWho has this functionality? Do I have access to that

object in this method?
•Adhere to interface

ØAccepted parameter types
ØType of what is returned

Apr 4, 2023 Sprenkle - CSCI111 2

2

2

Lab 11: Three Parts
•Linux practice:

ØUsing the wc command
•Social Network extensions

ØException handling
ØBinary search – find people with a certain name
ØUI: add search functionality

•Two-dimensional lists
ØIncluding Connect Four

Apr 4, 2023 Sprenkle - CSCI111 3

3

wc Command
•wc: Word Count
ØUsed to count
•The lines of Social Network code from Lab 10
•The lines of code for the whole semester

•Example:
Øwc –l ../lab10/*.py

•Specific directions are in the lab
Apr 4, 2023 Sprenkle - CSCI111 4

4

3

Searching Our Social Network

Apr 4, 2023 Sprenkle - CSCI111 5

In InstaFace, we want to find person who has a certain name.

Consider what happens when searchlist is a list of Persons
and key is a name (a str)

We want to find a Person whose name matches the key and
return the Person

5

Binary Search Implementation

Apr 4, 2023 Sprenkle - CSCI111 6

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

6

4

List of Person objects

Apr 4, 2023 Sprenkle - CSCI111 7

Example: looking for a person with the name “Tom”…

0 1 2 3 4

Person
Id:“1”
“Gal”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Person
Id: “4”
“Ben”

Person
Id: “5”

“Samuel”

7

List of Person objects

Apr 4, 2023 Sprenkle - CSCI111 8

0 1 2 3 4

Person
Id:“1”
“Gal”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Person
Id: “4”
“Ben”

Person
Id: “5”

“Samuel”

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

8

5

Extensions to Solution

Apr 4, 2023 Sprenkle - CSCI111 9

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

Consider what happens when
searchlist is a list of Persons,
key is a str representing a name
Goal: return a Person object with that
name (key)

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

9

Extensions to Solution

Apr 4, 2023 Sprenkle - CSCI111 10

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

What should we do to make
search results more intuitive?

Consider what happens when
searchlist is a list of Persons,
key is a str representing the name

Goal: find a Person with a certain name

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

10

6

Summary of Search Additions
• Add a search method to SocialNetwork class

Ø Takes as a parameter the name to search for
• Need to lowercase that name for more intuitive results

Ø Original binary search function took a list as a parameter; our method does
not
• Where should we get our list to search?

Ø The list to search must be sorted in alphabetical order by name
• Check the name of the Person that is at the midpoint, lowercased

Ø If they match, return that Person
Ø Otherwise, …

• Represent (in method) and handle (in UI) when no person has that
name

Apr 4, 2023 Sprenkle - CSCI111 11

11

Social Network Searching Overview
•Allows you to search for people by their name–

lowercased—for more intuitive results
•Update Person and SocialNetwork classes and UI

appropriately
ØSpecific directions are in the lab

Apr 4, 2023 Sprenkle - CSCI111 12

12

7

SocialNetwork Code
•Fix the major problems in your code first
•Or, use the code in the lab10_solution directory

Øperson.py, social.py, instaface.py

Apr 4, 2023 Sprenkle - CSCI111 13

13

2D LISTS

Apr 4, 2023 Sprenkle - CSCI111 14

14

8

Review
•How do you create a 2D list?
•How do you get the 2nd element in the 3rd “row” of a

list?
•How do you find the number of lists in a 2D list?
•How do you find the number of elements in one of

those lists?
•What was tricky about how csplot displays 2D lists?

Apr 4, 2023 Sprenkle - CSCI111 15

15

Handling Rectangular Lists

• What does each component of twod[1][2] mean?
• How many rows does twod have, in general?

Ø rows = len(twod)
• How many columns does twod have, in general?

Ø cols = len(twod[0])
Apr 4, 2023 Sprenkle - CSCI111 16

list
twod

list

list

list

twod[0]

twod[1]

twod[2]

42

twod[1][2] = 42

twod[2][3]

twod[0][0]

Row pos
Col pos

2-d list var

Assignment

16

9

Game Board for Connect Four
•6 rows, 7 columns board
•Players alternate dropping red/black checker into

slot/column
•Player wins when have four checkers in a row

vertically, horizontally, or diagonally

Apr 4, 2023 Sprenkle - CSCI111 17

How do we represent the board as a 2D list,
using a graphical representation?

17

Representing Connect Four Game Board
•Using a 2D list: _board
Ø6 rows, 7 columns
ØInitially, the board is full of 0s

Apr 4, 2023 Sprenkle - CSCI111 18

Number Meaning Color

0 Free Yellow

1 Player 1 Red

2 Player 2 Black

Row 0

Row 5

18

10

ConnectFour Class
•Data

ØConstants
ØBoard: _board

• 6 rows, 7 columns
• All spaces FREE to start

•Methods
ØConstructor
ØDisplay the board
ØPlay the game
ØGet input/move from user
ØCheck if valid move
ØMake move
ØCheck if win

Apr 4, 2023 Sprenkle - CSCI111 19

19

ConnectFour Constants

Apr 4, 2023 Sprenkle - CSCI111 20

class ConnectFour:
""" Class representing the game Connect Four. """

Represent different values on the board
FREE = 0
PLAYER1 = 1
PLAYER2 = 2

Represent the dimensions of the board
ROWS = 6
COLS = 7

To reference constants, use ConnectFour.CONSTANT

20

11

ConnectFour Class
•Implementation of method to play the game

ØRepeat:
• Get input/move from user

(depending on whose
turn it is)

• Make move
• Display board
• Check if win
• Change player

Apr 4, 2023 Sprenkle - CSCI111 21

def play(self):
won = False
player = ConnectFour.PLAYER1

while not won:
print("Player {:d}'s move".format(player))
if player == ConnectFour.PLAYER1:

col = self._userChooseColumn()
else: # computer is player 2

pause because otherwise move happens too
quickly and looks like an error
sleep(.75)
col = self._computerChooseColumn()

row = self.makeMove(player, col)
self.showBoard()
won = self._isWon(row, col)

alternate players
player = player % 2 + 1

21

Connect Four (C4): Making moves
•Precondition: User selects a valid column
•Postcondition: “Checker” is filled in at that

column

Apr 4, 2023 Sprenkle - CSCI111 22

def _userChooseColumn(self):
gets the column where user clicked
col = csplot.sqinput()
validMove = self._isValidMove(col)
while not validMove:

print("NOT A VALID MOVE.")
print("PLEASE SELECT AGAIN.")
print()
col = csplot.sqinput()
validMove = self._isValidMove(col)

return col

Enforcement of precondition:

22

12

Problem: C4 - Valid move?
•Need to enforce valid moves
ØIn physical game, run out of spaces for checkers if not

a valid move

•How can we determine if a move is valid?
ØHow do we know when a move is not valid?

Apr 4, 2023 Sprenkle - CSCI111 23

23

Problem: C4 - Valid move?
•Solution: check the “top”

spot
ØIf the spot is FREE,

then it’s a valid move

Apr 4, 2023 Sprenkle - CSCI111 24

Row 0

Row 5

def _isValidMove(self, col):
"""
Return True iff the dropping a checker in this col (an int)
represents a valid move.
"""
return self._board[ConnectFour.ROWS-1][col] == ConnectFour.FREE

24

13

ConnectFour Class
•Implementation of play the game method

ØRepeat:
• Get input/move from user

(depending on whose
turn it is)

• Make move
• Display board
• Check if win
• Change player

Apr 4, 2023 Sprenkle - CSCI111 25

def play(self):
won = False
player = ConnectFour.PLAYER1

while not won:
print("Player {:d}'s move".format(player))
if player == ConnectFour.PLAYER1:

col = self._userChooseColumn()
else: # computer is player 2

pause because otherwise move happens too
quickly and looks like an error
sleep(.75)
col = self._computerChooseColumn()

row = self.makeMove(player, col)
self.showBoard()
won = self._isWon(row, col)

alternate players
player = player % 2 + 1

25

Problem: C4 - Making a Move
•Given: a column for where the “checker” goes;

which player made the move
•Precondition: Valid column
•Postcondition: “Checker” is filled in at that

column; the row where the checker “lands” is
returned

Apr 4, 2023 Sprenkle - CSCI111 26

How do we implement this method?

26

14

Lab 11 Directory
•To start, your directory should look like
Øconnectfour.py
Øcsplot.py
Øinstaface.py instaface.out
Ølab10_solution
Øperson.py person.out
Øsocial.py social.out
Øtest.py

Apr 4, 2023 Sprenkle - CSCI111 27

27

Apr 4, 2023 Sprenkle - CSCI111 28

Thanks to Jenna and Fekry
for their help this semester!

28

