
9/21/16	

1	

Objec,ves	
• Inheritance	

Ø Overriding	methods	

• Garbage	collec,on	
• Parameter	passing	in	Java	

Sept	21,	2016	 Sprenkle	-	CSCI209	 1	

Assignment	2	Review	

• Is	the	above	code	correct?	

Sept	21,	2016	 Sprenkle	-	CSCI209	 2	

private int oneVar;

public Assign2(int par) {
oneVar = par;

}	

9/21/16	

2	

Sept	21,	2016	 Sprenkle	-	CSCI209	 3	

Review	
• What	does	static	mean?	
• When	should	we	make	a	method	static?	
• How	can	we	call	a	constructor	from	another	
constructor?	

Overloaded	Constructors	
• In	assignment	3,	did	it	make	sense	for	one	
constructor	to	call	another	constructor?	

Sept	21,	2016	 Sprenkle	-	CSCI209	 4	

9/21/16	

3	

Find	the	error	

Sept	21,	2016	 Sprenkle	-	CSCI209	 5	

public class Birthday {

private int month;
private int day;

public Birthday() {  
int month = (generate random month);
int day;
…

 }

…
}

Find	the	error	

Sept	21,	2016	 Sprenkle	-	CSCI209	 6	

public class Birthday {

private int month;
private int day;

public Birthday() {  
int month = (generate random month);
int day;
…

 }

…
}

These variables are getting redeclared �
as temporary variables within the
Birthday constructor.
The instance variables are not being
assigned values.

9/21/16	

4	

Explain	the	Error	
• Representa,ve	Error:	

Sept	21,	2016	 Sprenkle	-	CSCI209	 7	

error: non-static method myMethod() cannot
be referenced from a static context

Explain	the	Error	
• Representa,ve	Error:	

• myMethod	was	called	from	a	sta,c	context	
Ø E.g.,	from	the	class	(not	an	object)	

• Can’t	then	call	a	method	for	an	object	
Ø Where	did	that	object	come	from?	

Sept	21,	2016	 Sprenkle	-	CSCI209	 8	

error: non-static method myMethod() cannot
be referenced from a static context

9/21/16	

5	

Sept	21,	2016	 Sprenkle	-	CSCI209	 9	9	

final	keyword	
• An	instance	field	can	be	final	
• final instance	fields	must	be	set	in	the	
constructor	or	in	the	field	declara,on	
Ø Cannot	be	changed	a"er	object	is	constructed	

private final String dbname = "invoices";
private final String id;
…
public MyObject(String id) {

this.id = id;
}

BASICS	OF	JAVA	INHERITANCE	

Sept	21,	2016	 Sprenkle	-	CSCI209	 10	

9/21/16	

6	

Review	
• What	class	does	every	Java	class	inherit	from?	
• What	is	the	Java	equivalent	of	__str__?	
• What	is	the	Java	equivalent	of	__eq__?	

Sept	21,	2016	 Sprenkle	-	CSCI209	 11	

Parent	Class:	Object
• Every	new	class	you	create	automa1cally	inherits	
from	the	Object class	
Ø See	Java	API	

• Useful	Object	methods	to	customize	your	class	
Ø String toString()

•  Returns	a	string	representa,on	of	the	object	
•  Like	Python’s	__str__

Ø boolean equals(Object o)
•  Return	true iff	this	object	and	o are	equivalent	
•  Like	Python’s	__eq__

Ø void finalize()
•  Called	when	object	is	destroyed	
•  Clean	up	resources	

Sept	21,	2016	 Sprenkle	-	CSCI209	 12	

Method signature

9/21/16	

7	

More	on toString()
• Automa,cally	called	when	object	is	passed	to	
print	methods	

• Default	implementa,on:	Class	name	followed	by	
@	followed	by	unsigned	hexidecimal	
representa,on	of	hashcode	
Ø Example:	Chicken@163b91

• General	contract:		
Ø “A	concise	but	informa,ve	representa,on	that	is	
easy	for	a	person	to	read”	

• Your	responsibility:	Document	the	format	
Sept	21,	2016	 Sprenkle	-	CSCI209	 13	

Chicken.java toString
• What	would	be	a	good	string	representa,on	of	a	
Chicken	object?	
Ø Look	at	output	before	and	aher	toString method	
implemented	

Sept	21,	2016	 Sprenkle	-	CSCI209	 14	

9/21/16	

8	

boolean equals(Object o)
• Procedure	(Source:	Effec1ve	Java)	

Ø Use	the	==	operator	to	check	if	the	argument	is	a	
reference	to	this	object	

Ø Use	the	instanceof	operator	to	check	if	the	argument	
has	the	correct	type	
•  If	a	variable	is	a	null	reference,	then	instanceof	will	be	
false	

Ø Cast	the	argument	to	the	correct	type	
Ø For	each	"significant"	field	in	the	class,	check	if	that	field	
of	the	argument	matches	the	corresponding	field	of	this	
object	
•  For	doubles,	use	Double.compare	and	for	floats	use	
Float.compare

Sept	21,	2016	 Sprenkle	-	CSCI209	 15	
 How should we determine that �

two Chickens are equivalent?

@Override	
• Annota,on	
• Tells	compiler	“This	method	overrides	a	method	
in	a	parent	class.		It	should	have	the	same	
signature	as	that	method	in	the	parent	class”	

• If	you	do	not	correctly	override	the	method,	then	
the	compiler	will	give	you	a	warning	

• The	point:	use	@Override	so	you	don’t	make	silly
—yet	costly—mistakes	

Sept	21,	2016	 Sprenkle	-	CSCI209	 16	

9/21/16	

9	

Sept	21,	2016	 Sprenkle	-	CSCI209	 17	

What	is	“bad”	about	this	class?	

public class Farm {
. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return headRooster;

}
. . .

}

Sept	21,	2016	 Sprenkle	-	CSCI209	 18	

Encapsula,on	Revisited	
• Objects	should	hide	their	data	and	only	allow	
other	objects	to	access	this	data	through	
accessor	and	mutator	methods	

• Common	programmer	mistake:		
Ø Crea,ng	an	accessor	method	that	returns	a	reference	
to	a	mutable	(changeable)	object	

9/21/16	

10	

Sept	21,	2016	 Sprenkle	-	CSCI209	 19	

Fixing	the	Problem:	Cloning	
public class Farm {

. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return (Chicken) headRooster.clone();

}
. . .

}

• In previous example, could modify returned object’s state
• Another Chicken object, with the same data as headRooster,  
is created and returned to the user
• If the user modifies (e.g., feeds) that object, headRooster is not
affected

Method is available to all objects
(inherited from Object)	

Sept	21,	2016	 Sprenkle	-	CSCI209	 20	

Cloning	
• Cloning	is	a	more	complicated	topic	than	it	seems	
from	the	example	
Ø Out	of	scope	for	this	class	

9/21/16	

11	

Sept	21,	2016	 Sprenkle	-	CSCI209	 21	

Review:	Class	Design/Organiza,on	
• Fields	

Ø Chosen	first	
Ø Placed	at	the	beginning	or	end	of	class	defini,on	
Ø Have	an	access	modifier,	data	type,	variable	name,	
and	some	op,onal	other	modifiers	

Ø Use	this keyword	to	access	the	object	
• Constructors	
• Methods	

Ø Need	to	declare	the	return	type	
Ø Have	an	access	modifier

GARBAGE	COLLECTION	

Sept	21,	2016	 Sprenkle	-	CSCI209	 22	

9/21/16	

12	

Sept	21,	2016	 Sprenkle	-	CSCI209	 23	

Memory	Management	
• In	C++	and	some	other	OOP	languages,	classes	
have	explicit	destructor	methods	that	run	when	
an	object	is	no	longer	used	

• Java	does	not	support	destructors	because	it	
provides	automa&c	garbage	collec&on		
Ø Waits	un,l	there	are	no	references	to	an	object	
Ø Reclaims	memory	allocated	for	the	object	that	is	no	
longer	referenced	

Do you know what Python does?

Sept	21,	2016	 Sprenkle	-	CSCI209	 24	

Garbage	Collector	
• Garbage	collector	is	low-priority	thread	

Ø Or	runs	when	available	memory	gets	,ght	

• Before	GC	can	clean	up	an	object,	the	object	may	
have	opened	resources	
Ø Ex:	generated	temp	files	or	open	network	
connec,ons	that	should	be	deleted/closed	first	

• GC	calls	object’s	finalize()	method	
Ø Object’s	chance	to	clean	up	resources	

Discussion: Benefits and limitations of garbage collection?

9/21/16	

13	

Garbage	Collec,on	

Benefits	
•  Fewer	memory	leaks	

Ø  Less	buggy	code	
Ø  But,	memory	leaks	are	s,ll	

possible	

• Code	is	easier	to	write	
	

Limita>ons	
• Garbage	collec,on	may	not	
be	as	efficient	as	explicit	
freeing	memory	

Sept	21,	2016	 Sprenkle	-	CSCI209	 25	

Sept	21,	2016	 Sprenkle	-	CSCI209	 26	

finalize()
• Inherited	from	java.lang.Object
• Called	before	garbage	collector	sweeps	away	an	object	
and	reclaims	its	memory	

• Should	not	be	used	for	reclaiming	resources	
Ø  i.e.,	close	resources	as	soon	as	possible	
Ø Why?	

• When	method	is	called	is	not	determinis,c	or	consistent	
•  Only	know	it	will	run	some,me	before	garbage	collec,on	

• Clean	up	anything	that	cannot	be	atomically	cleaned	up	by	
the	garbage	collector	
Ø  Close	file	handles,	network	connec,ons,	database	

connec,ons,	etc.	
• Note:	no	finalizer	chaining	

Ø Must	explicitly	call	parent	object’s	finalize method	

9/21/16	

14	

Alterna,ves	to	finalize
• Recall:	unknown	when	finalize will	execute
—or	if	it	will	execute	
Ø Also	heavy	performance	cost	

• Solu,on:	create	your	own	termina,ng	method	
Ø User	of	class	terminates	when	done	using	object	

• Examples:	File’s	or	Window’s	close method	
• May	s,ll	want	finalize()	as	a	safety	net	if	
user	didn’t	call	the	terminate	method	
Ø Log	a	warning	message	so	user	knows	error	in	code	

Sept	21,	2016	 Sprenkle	-	CSCI209	 27	

PARAMETER	PASSING	

Sept	21,	2016	 Sprenkle	-	CSCI209	 28	

9/21/16	

15	

Review	
• How	are	parameters	passed	in	Java?	

Sept	21,	2016	 Sprenkle	-	CSCI209	 29	

Sept	21,	2016	 Sprenkle	-	CSCI209	 30	

Method	Parameters	in	Java	
• Java	always	passes	parameters	into	methods		
by	value	
Ø Methods	cannot	change	the	variables	used	as	input	
parameters	

Ø A	subtle	point,	so	we	need	to	go	through	several	
examples	

• Python	is	something	that’s	not	quite	pass-by-
value—it	depends	on	if	the	object	is	mutable	or	
immutable	
Ø Pass-by-alias	is	one	term	used	

9/21/16	

16	

Sept	21,	2016	 Sprenkle	-	CSCI209	 31	

Method	Parameters	in	Java	
public static void main(String[] args) {

int x = 10;
int squared = square(x);
System.out.println("The square of " + x + " is " +

squared);
}

public static int square(int num) {
return num*=num;

}	

Draw the stack as it changes
(similar to Python): main x 10

Sept	21,	2016	 Sprenkle	-	CSCI209	 32	

What’s	the	Output?	

public static void main(String[] args) {
int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
. . .

public static void doubleValue(int p) {
p = p * 2;

}

9/21/16	

17	

Sept	21,	2016	 Sprenkle	-	CSCI209	 33	

What’s	the	Output?	

public static void main(String[] args) {
int x = 27;
System.out.println(x);
doubleValue(x);
System.out.println(x);

}
. . .

static void doubleValue(int p) {
p = p * 2;

}

27	
27	

Pass	by	Value:	Objects	
• Primi,ve	types	are	a	lisle	more	obvious	

Ø Can’t	change	original	variable		
• For	objects,	passing	a	copy	of	the	parameter	
looks	like	

Sept	21,	2016	 Sprenkle	-	CSCI209	 34	

public void methodName(Chicken c)

methodName(chicken);

chicken =		

c =		
height	=	

name	=	

38	

“Fred”	

weight	=	

height	=	

name	=	

3.0	

45	

“Sallie	Mae”	

x00FFBB

x00FFBB

Pass Chicken object to methodName when calling method

9/21/16	

18	

Pass	by	Value:	Objects	
• What	happens	in	this	case?	

Sept	21,	2016	 Sprenkle	-	CSCI209	 35	

public void methodName(Chicken c) {
if(c.getWeight() < MIN) {

c.feed();
}
…

}

methodName(chicken);

chicken =		

c =		
height	=	

name	=	

38	

“Fred”	

weight	=	

height	=	

name	=	

3.0	

45	

“Sallie	Mae”	

x00FFBB

x00FFBB

Does	chicken
change in calling

method?

Pass	by	Value:	Objects	
• What	happens	in	this	case?	

Sept	21,	2016	 Sprenkle	-	CSCI209	 36	

public void methodName(Chicken c) {
if(c.getWeight() < MIN) {

c.feed();
}
…

}

chicken =		

c =		
height	=	

name	=	

38	

“Fred”	

weight	=	

height	=	

name	=	

3.0	

45	

“Sallie	Mae”	

x00FFBB

x00FFBB

Does chicken change
in calling method? �
YES! Both chicken	
and	c	are pointing to the
same object

methodName(chicken);

9/21/16	

19	

Sept	21,	2016	 Sprenkle	-	CSCI209	 37	

What’s	the	Output?	
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {

c.setWeight(c.getWeight() + .5);
}

Sept	21,	2016	 Sprenkle	-	CSCI209	 38	

What’s	the	Output?	
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(),
c.getHeight());

c.setWeight(c.getWeight() + .5);
}

9/21/16	

20	

Sept	21,	2016	 Sprenkle	-	CSCI209	 39	39	

Tracing	through	Execu,on	
Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5, 23);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .
// From Farm class
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(),
c.getHeight());

c.setWeight(c.getWeight() + .5);
}

sal =		

c =		
height	=	

name	=	

38	

“Fred”	

weight	=	

height	=	

name	=	

5	

23	

“Sallie	Mae”	

x00FFBB

x00FFBB

Sept	21,	2016	 Sprenkle	-	CSCI209	 40	40	

Tracing	through	Execu,on	
public void feedChicken(Chicken c) {

c = new Chicken(c.getName(), c.getWeight(),
c.getHeight());

c.setWeight(c.getWeight() + .5);
}

sal =		

c =		

height	=	

name	=	

38	

“Fred”	

weight	=	

height	=	

name	=	

5	

23	

"Sallie	Mae"	

x00FFBB

x0AFFBF
height	=	

name	=	

38	

“Fred”	

weight	=	

height	=	

name	=	

5	

23	

"Sallie	Mae"	

9/21/16	

21	

Sept	21,	2016	 Sprenkle	-	CSCI209	 41	

Summary	of	Method	Parameters	
• Everything	is	passed	by	value	in	Java	

• An	object	variable	(not	an	object)	is	passed	into	a	
method	
Ø Changing	the	state	of	an	object	in	a	method	changes	
the	state	of	object	outside	the	method	

Ø Method	does	not	see	a	copy	of	the	original	object	

To	Do	
• Assignment	4	

Ø Birthday	class,	applica,on	

Sept	21,	2016	 Sprenkle	-	CSCI209	 42	

