
9/23/16	

1	

Objec-ves	
• Inheritance	
• Polymorphism	

Ø Dispatch	

Sept	23,	2016	 Sprenkle	-	CSCI209	 1	

Sept	23,	2016	 Sprenkle	-	CSCI209	 2	

Review	
• What	method	should	we	implement	to	allow	
preJy	prin-ng	of	objects	we	define?	

• What	method	should	we	implement	for	
determining	if	two	objects	are	equivalent?	

• How	does	Java	pass	parameters?	
• What	does	Java	provide	to	prevent	memory	
leaks?	



9/23/16	

2	

Assignment	4	Notes	
• Document	format	for	toString	and	how	
determines	equivalence	in	equals

Sept	23,	2016	 Sprenkle	-	CSCI209	 3	

 /**
  * Returns a string representation of the chicken.
  * Format:
  * Chicken name: <name>
  * weight: <weight>
  * height: <height>
  * female/male
  */

/**
 Determines if two Chickens are 
equivalent, based on their name, 
height, weight, and gender.
 */

INHERITANCE	

Sept	23,	2016	 Sprenkle	-	CSCI209	 4	



9/23/16	

3	

Inheritance	Review	
• What	are	the	benefits	of	inheritance?	

Ø When	should	one	class	inherit	from	another	class?	
(design	decision)	

• How	do	we	refer	to	the	parent	class	in	Java?	
• What	is	the	new	access	modifier	introduced?	
• What	is	the	Java	keyword	that	means	one	class	
inherits	from	another?	

Sept	23,	2016	 Sprenkle	-	CSCI209	 5	

Sept	23,	2016	 Sprenkle	-	CSCI209	 6	

Inheritance	
• Build	new	classes	based	on	exis-ng	classes	

Ø Allows	code	reuse	
• Start	with	a	class	(parent	or	super	class)	
• Create	another	class	that	extends	or	specializes	
the	class	
Ø Called	the	child,	subclass	or	derived	class	
Ø Use	extends keyword	to	make	a	subclass	

Examples?



9/23/16	

4	

Sept	23,	2016	 Sprenkle	-	CSCI209	 7	

Child	class	
• Inherits	all	of	parent	class’s	methods	and	fields	

Ø Note	on	private	fields:	all	are	inherited,	just	can’t	
access	

• Can	also	override	methods	
Ø Use	the	same	name	and	parameters,	but	implementa-on	
is	different	

• Adds	methods	or	fields	for	addi/onal	func/onality	
• Use	super	object	to	call	parent’s	method	

Ø Even	if	child	class	redefines	parent	class’s	method	

Sept	23,	2016	 Sprenkle	-	CSCI209	 8	

Inheritance	Rules	
• Constructors	are	not	inherited	

Ø For	example:	we	will	have	to	define		
Rooster( String name, int height, 
double weight )  
even	though	similar	constructor	in	Chicken



9/23/16	

5	

Sept	23,	2016	 Sprenkle	-	CSCI209	 9	

Rooster class	
• Could	write	class	from	scratch,	but	…	
• A	rooster	is	a	chicken	

Ø But	it	adds	something	to	(or	specializes)	what	a	
chicken	is/does		

• Classic	mark	of	inheritance:	is	a	rela-onship	
• Rooster	is	child	class	
• Chicken	is	parent	class	

Modify	Chicken Class	
• What	if	we	want	instance	variables	to	be	
accessible	by	child	class	
Ø Can’t	be	private*

Sept	23,	2016	 Sprenkle	-	CSCI209	 10	



9/23/16	

6	

Sept	23,	2016	 Sprenkle	-	CSCI209	 11	

Access	Modifiers	
• public

Ø Any	class	can	access	
• private

Ø No	other	class	can	access	(including	child	classes)	
• Must	use	parent	class’s	public	accessor/mutator	
methods	

• protected
Ø Child	classes	can	access	
Ø Members	of	package	can	access	
Ø Other	classes	cannot	access	

Access	Modes	

Accessible	to	 Member	Visibility	
public protected package private

Defining	class	 Yes	 Yes	 Yes	 Yes	
Class	in	same	
package	

Yes	 Yes	 Yes	 No	

Subclass	in	
different	package	

Yes	 Yes	 No	 No	

Non-subclass	
different	package	

Yes	 No	 No	 No	

Sept	23,	2016	 Sprenkle	-	CSCI209	 12	

Default (if none specified)



9/23/16	

7	

protected
• Accessible	to	subclasses	and	members	of	package	
• Can’t	keep	encapsula-on	“pure”	

Ø Don’t	want	others	to	access	fields	directly	
Ø May	break	code	if	you	change	your	implementa-on	

• Assump-on?	
Ø Someone	extending	your	class	with	protected	access	
knows	what	they	are	doing		

Sept	23,	2016	 Sprenkle	-	CSCI209	 13	

Sept	23,	2016	 Sprenkle	-	CSCI209	 14	

Access	Modifiers	
• If	you're	uncertain	which	to	use	(protected,	
package,	or	private),	use	the	most	restric/ve	
Ø Changing	to	less	restric-ve	later	à	easy	
Ø Changing	to	more	restric-ve	à	may	break	code	that	
uses	your	classes	



9/23/16	

8	

Look	at	Modified	Chicken	Class	
• Two	examples:	

Ø one	is	extending	the	Chicken	class,	whose	instance	
variables	are	private	

Ø one	is	extending	the	Chicken	class,	where	the	
instance	variables	are	protected.	

Sept	23,	2016	 Sprenkle	-	CSCI209	 15	

Sept	23,	2016	 Sprenkle	-	CSCI209	 16	

Rooster class	
public class Rooster extends Chicken {

public Rooster( String name, 
int height, double weight) {
// all instance fields inherited
// from super class
this.name = name;
this.height = height;
this.weight = weight;
is_female = false;

}

// new functionality
public void crow() {… }
…

By default calls default 
super constructor with 

no parameters

extends means that Rooster 
is a child of Chicken

(not one of the examples 
posted online)



9/23/16	

9	

Sept	23,	2016	 Sprenkle	-	CSCI209	 17	

Rooster class	
public class Rooster extends Chicken {

public Rooster( String name, 
int height, double weight) {

super(name, height, weight, false);
}

// new functionality
public void crow() { … }

…
}

Call to super constructor must be first line in constructor

Sept	23,	2016	 Sprenkle	-	CSCI209	 18	

Constructor	Chaining	
• Constructor	automa-cally	calls	constructor	of	
parent	class	if	not	done	explicitly	
Ø super();

• What	if	parent	class	does	not	have	a	constructor	
with	no	parameters?	
Ø Compila-on	error	
Ø Forces	child	classes	to	call	a	constructor	with	
parameters	



9/23/16	

10	

Sept	23,	2016	 Sprenkle	-	CSCI209	 19	

Overriding	and	New	Methods	
public class Rooster extends Chicken {

…

// overrides superclass; greater gains
@Override
public void feed() {

weight += .5;
height += 2;

}

// new functionality
public void crow() {

System.out.println("Cocka-Doodle-Doo!");
}

}

Same method signature 
as parent class

Specializes the class

Sept	23,	2016	 Sprenkle	-	CSCI209	 20	

Inheritance	Tree	
• java.lang.Object

Ø Chicken
• Rooster
	

• Call	parent	class’s	constructor	first	
Ø Know	you	have	fields	of	parent	class	
before	implemen-ng	constructor	
for	your	class	

Object

Chicken

Rooster

1	

2	



9/23/16	

11	

Sept	23,	2016	 Sprenkle	-	CSCI209	 21	

Inheritance	Tree	
• java.lang.Object

Ø Chicken
• Rooster
	

• No	finalize()	chaining	
Ø Should	call	super.finalize()  
inside	of	finalize	method	

Object

Chicken

Rooster

1	

2	

Sept	23,	2016	 Sprenkle	-	CSCI209	 22	

Shadowing	Parent	Class	Fields	
• Child	class	has	field	with	same	name	as	parent	
class	
Ø You	probably	shouldn’t	be	doing	this!	
Ø But	could	happen	

• Example:	more	precision	for	a	constant	

field       // this class's field
this.field  // this class's field
super.field // super class's field



9/23/16	

12	

Sept	23,	2016	 Sprenkle	-	CSCI209	 23	

Mul-ple	Inheritance	
• In	Python,	it	is	possible	for	a	class	to	inherit	(or	
extend)	more	than	one	parent	class	
Ø Child	class	has	the	fields	from	both	parent	classes		

• This	is	NOT	possible	in	Java.			
Ø A	class	may	extend	(or	inherit	from)	only	one	class	

POLYMORPHISM	&	DISPATCH	

Sept	23,	2016	 Sprenkle	-	CSCI209	 24	



9/23/16	

13	

Sept	23,	2016	 Sprenkle	-	CSCI209	 25	

Polymorphism	
• Polymorphism	is	the	ability	for	an	object	to	vary	
behavior	based	on	its	type	

• You	can	use	a	child	class	object	whenever	the	
program	expects	an	object	of	the	parent	class	

• Object	variables	are	polymorphic	
• A	Chicken object	variable	can	refer	to	an	object	
of	class	Chicken, Rooster, Hen,	or	any	class	
that	inherits	from	Chicken

	Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

We can guess the actual types
But compiler can’t

Sept	23,	2016	 Sprenkle	-	CSCI209	 26	

Compiler’s	Behavior	

• We	know	chickens[1]	is	probably	a	
Rooster,	but	to	compiler,	it’s	a	Chicken so		
chickens[1].crow(); will	not	compile	

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;



9/23/16	

14	

Sept	23,	2016	 Sprenkle	-	CSCI209	 27	

Compiler’s	Behavior	
• When	we	refer	to	a	Rooster object	through	a	
Rooster	object	variable,		
compiler	sees	it	as	a	Rooster	object	

• If	we	refer	to	a	Rooster	object	through	a	
Chicken	object	variable,		
compiler	sees	it	as	a	Chicken	object.	

• We	cannot	assign	a	parent	class	object	to	a	derived	
class	object	variable	
Ø Ex:	Rooster	is	a	Chicken,	but	a	Chicken	is	not	
necessarily	a	Rooster

Rooster r = chicken;

à Object variable determines how compiler sees object.

Sept	23,	2016	 Sprenkle	-	CSCI209	 28	

Polymorphism	

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

chickens[1].feed();

Compiles	because	Chicken	has	a	feed	method.	
	
But,	which	feed	method	is	called	–		

	 	Chicken’s	or	Rooster’s?	



9/23/16	

15	

Sept	23,	2016	 Sprenkle	-	CSCI209	 29	

Polymorphism	
• Which	method	do	we	call	when	we	call	
chicken[1].feed()
Rooster’s	or	Chicken’s?	

• In	Java	(and	Python):	Rooster’s!	
Ø Object	is	a	Rooster
Ø JVM	figures	out	its	class	at	run-me	and	runs	the	
appropriate	method	

• Dynamic	dispatch	
Ø At	run-me,	the	object’s	class	is	determined	
Ø Then,	appropriate	method	for	that	class	is	dispatched	

Sept	23,	2016	 Sprenkle	-	CSCI209	 30	

Feed	the	Chickens!	

• Dynamic	dispatch	calls	the	appropriate	method	in	
each	case,	corresponding	to	the	actual	class	of	
each	object		
Ø This	is	the	power	of	polymorphism	and	dynamic	
dispatch!	

for( Chicken c: chickens ) {
c.feed();

}
How to read this code?
What happens in execution?

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

Recall:		



9/23/16	

16	

Sept	23,	2016	 Sprenkle	-	CSCI209	 31	

Dynamic	vs.	Sta-c	Dispatch	
• Dynamic	dispatch	is	not	necessarily	a	property	of	
object-oriented	programming	in	general	

• Some	OOP	languages	use	staHc	dispatch	
Ø Type	of	the	object	variable	used	to	call	the	method	
determines	which	version	gets	run	

• The	primary	difference	is	when	decision	on	which	
method	to	call	is	made…	
Ø Sta-c	dispatch	(C#)	decides	at	compile	-me	
Ø Dynamic	dispatch	(Java,	Python)	decides	at	run	-me	

• Dynamic	dispatch	is	slow	
Ø  In	mid	to	late	90s,	ac-ve	research	on	how	to	decrease	
-me	

What	Will	This	Code	Output?	

Sept	23,	2016	 Sprenkle	-	CSCI209	 32	

class Parent {
    public Parent() {}
    
    public void method1() {
        System.out.println("Parent: method1");   
    }
    
    public void method2() {
        System.out.println("Parent: method2");
        method1();
    } 
}

class Child extends Parent {
    public Child() {}
    
    public void method1() {
        System.out.println("Child: method1");   
    }
}

public class DynamicDispatchExample {  
    public static void main(String[] args) {
        Parent p = new Parent();
        Child c = new Child();
        
        p.method1();
        System.out.println("");

        c.method1();
        System.out.println("");
        
        p.method2();
        System.out.println("");

        c.method2();
        System.out.println("");
    }
}

See handout



9/23/16	

17	

Sept	23,	2016	 Sprenkle	-	CSCI209	 33	

Inheritance	Rules:	Access	Modifiers	

• Why?			
• What	would	happen	if	a	method	in	the	parent	
class	is	public but	the	child	class’s	method	is	
private?	

Access modifiers in child classes
• Can make access to child class less restrictive but 

not more restrictive

Sept	23,	2016	 Sprenkle	-	CSCI209	 34	

Inheritance	Rules:	Access	Modifiers	

• If	a	public method	could	be	overridden	as	a	protected	
or	private	method,	child	objects	would	not	be	able	to	
respond	to	the	same	method	calls	as	parent	objects	

• When	a	method	is	declared	public	in	the	parent,	the	
method	remains	public	for	all	that	class’s	child	classes	

• Remembering	the	rule:	compiler	error	to	override	a	
method	with	a	more	restricted	access	modifier	

Access modifiers in child classes
• Can make access to child class less restrictive but 

not more restrictive



9/23/16	

18	

Assignment	5	
• Start	of	a	simple	video	game	

Ø Game class	to	run	
Ø GamePiece is	parent	class	of	other	moving	objects	

• Some	less-than-ideal	design	
Ø Can’t	fix	un-l	see	other	Java	structures	(Monday)	

• Don’t	need	to	understand	all	of	the	code,	just	some	
of	it	

• Create	a	Goblin class	and	a	Treasure class	
Ø Move	Goblin and	Treasure	

• Due	Wednesday	

Sept	23,	2016	 Sprenkle	-	CSCI209 35	

Copy	/csdept/local/courses/cs209/handouts/assign5

Sept	23,	2016	 Sprenkle	-	CSCI209	 36	


