
9/26/16	

1	

Objec,ves	
• Javadocs	
• Inheritance	

Ø Final	methods,	fields	

• Abstract	Classes	
• Interfaces	

Sept	26,	2016	 Sprenkle	-	CSCI209	 1	

JAVADOCS	

Sept	26,	2016	 Sprenkle	-	CSCI209	 2	

“Documentation is a love letter that you write to
your future self.” – Damian Conway

9/26/16	

2	

Javadocs	
• Special	comments,	which	are	used	to	generate	
HTML	documenta,on	

• Syntax:		

• Put	before	a	class,	a	method,	or	a	field	to	
describe	the	respec,ve	class/method/field	

Sept	26,	2016	 Sprenkle	-	CSCI209	 3	

/**
 * Comment
 */	

Javadoc	

Sept	26,	2016	 Sprenkle	-	CSCI209	 4	

@param <paramname> <description>
@return <description> (include	special	cases)	

• Can	contain	HTML	syntax	in	descrip,on	
• Example	block	tags	to	describe	your	code	

9/26/16	

3	

Examples	

Sept	26,	2016	 Sprenkle	-	CSCI209	 5	

/**
 * A simple Java class that models a Chicken. The
 * state of the chicken is its name, height, and weight
 *
 * @author Sara Sprenkle
 */	

/**
 * @return the height of the chicken, in centimeters
 */	

/**
 * @param n the String representing the name of the
chicken
 */	

Expect these types of comments on all methods from now on

Tags always go last in Javadoc comment

Genera,ng	Javadocs	
• From	command-line:	

javadoc [options] [packagenames]
[sourcefiles] [@files]

• Generates	HTML	files	
Ø Example:	Game’s	Javadocs	

Sept	26,	2016	 Sprenkle	-	CSCI209	 6	

9/26/16	

4	

Sept	26,	2016	 Sprenkle	-	CSCI209	 7	

Review	
• How	do	we	make	a	class	inherit	from	a	parent	class?	
• How	does	a	class	refer	to	its	parent	class?	
• What	does	a	class	inherit	from	its	parent	class?	

Ø What	is	not	inherited?	
• What	are	the	access	modifiers,	ordered	from	least	
restric,ve	to	most	restric,ve?	

• How	can	we	verify	that	an	object	variable	is	a	certain	type?	
• How	can	we	specify	that	an	object	variable	has	a	different	
type	(a	derived	type)?	

• How	does	Java	decide	which	method	to	call	on	an	object?	
Ø  Example:	chicken[1].feed();

Review	
• Designing	classes:	When	should	you	make	a	
variable/field	
Ø Local	vs	instance	vs	sta,c	
Ø Private	vs	protected	vs	public	

• Inheritance	in	game	code	
Ø Java	docs	

• Importance	of	vocabulary	

Sept	26,	2016	 Sprenkle	-	CSCI209	 8	

9/26/16	

5	

Sept	26,	2016	 Sprenkle	-	CSCI209	 9	

Summary	of	Inheritance	
• Remove	repe,,ve	code	by	modeling	the	“is-a”	
hierarchy	
Ø Move	“common	denominator”	code	up	the	
inheritance	chain	

• Don’t	use	inheritance	unless	all	inherited	
methods	make	sense	

• Use	polymorphism	

FINAL	KEYWORD	

Sept	26,	2016	 Sprenkle	-	CSCI209	 10	

9/26/16	

6	

Sept	26,	2016	 Sprenkle	-	CSCI209	 11	

Preven,ng	Inheritance	
• Some,mes,	you	do	not	want	a	class	to	derive	from	one	
of	your	classes	

• A	class	that	cannot	be	extended	is	known	as	a	final
class	

• To	make	a	class	final,	simply	add	the	keyword	final in	
front	of	the	class	defini,on:	

	
		
• Example	of	final class:	System
	

public final class Rooster extends Chicken {
. . .

}

Sept	26,	2016	 Sprenkle	-	CSCI209	 12	

Final	methods	
• Can	make	a	method	final

Ø Any	class	derived	from	this	class	cannot	override	the	
final methods	

• By	default,	all	methods	in	a	final class	are	
final methods.	

class Chicken {
. . .
public final String getName() { . . . }
. . .

}

Why would we want to use final?
What are possible benefits to us, the compiler, JVM,…?

9/26/16	

7	

Sept	26,	2016	 Sprenkle	-	CSCI209	 13	

Why	final methods	and	classes?	

• Efficiency	
Ø Compiler	can	replace	a	final method	call	with	an	
inline	method	
• Does	not	have	to	worry	about	another	form	of	this	
method	that	belongs	to	a	derived	class	

Ø JVM	does	not	need	to	determine	which	method	to	
call	dynamically		

• Safety		
Ø No	alternate	form	of	the	method;	straighiorward	
which	version	of	the	method	you	called	

ABSTRACT	CLASSES	

Sept	26,	2016	 Sprenkle	-	CSCI209	 14	

9/26/16	

8	

Sept	26,	2016	 Sprenkle	-	CSCI209	 15	

Abstract	Classes	
• Some	methods	defined,	others	not	defined	

Ø Par,al	implementa,on	

• Classes	in	which	not	all	methods	are	
implemented	are	abstract	classes
Ø public abstract class ZooAnimal

• Blank	methods	are	labeled	as	abstract
Ø public abstract void
exercise(Environment env);

Sept	26,	2016	 Sprenkle	-	CSCI209	 16	

Abstract	Classes	
• An	abstract	class	cannot	be	instan,ated	

Ø i.e.,	can’t	create	an	object	of	that	class	
Ø But	can	have	a	constructor!	

• Child	class	of	an	abstract	class	can	only	be	
instan,ated	if	it	overrides	and	implements	every	
abstract	method	of	parent	class	
Ø If	child	class	does	not	override	all	abstract	methods,	
it	is	also	abstract	

9/26/16	

9	

Sept	26,	2016	 Sprenkle	-	CSCI209	 17	

Abstract	Classes	
• static,	private,	and	final	methods	
cannot	be	abstract
Ø B/c	cannot	be	overridden	by	a	child	class	

• final class	cannot	contain	abstract	methods	

• A	class	can	be	abstract	even	if	it	has	no	abstract	
methods	
Ø Use	when	implementa,on	is	incomplete	and	is	
meant	to	serve	as	a	parent	class	for	class(es)	that	
complete	the	implementa,on	

• Can	have	array	of	objects	of	abstract	class	
Ø JVM	will	do	dynamic	dispatch	for	methods	

Why?	

Sept	26,	2016	 Sprenkle	-	CSCI209	 18	

Summary:	Defining	Abstract	Classes	
➨ Define	a	class	as	abstract	when	have	par-al	
implementa-on	

9/26/16	

10	

INTERFACES	

Sept	26,	2016	 Sprenkle	-	CSCI209	 19	

Sept	26,	2016	 Sprenkle	-	CSCI209	 20	

Interfaces	
• Pure	specifica,on,	no	implementa,on	

Ø A	set	of	requirements	for	classes	to	conform	to	

	
• Classes	can	implement	one	or	more	interfaces	

9/26/16	

11	

Sept	26,	2016	 Sprenkle	-	CSCI209	 21	

Example	of	an	Interface	
• Arrays.sort(array)

Ø Arrays.sort()	sorts	arrays	of	any	object	class	that	
implements	the	Comparable interface	

• Classes	that	implement	Comparable must	
provide	a	way	to	decide	if	one	object	is	less	than,	
greater	than,	or	equal	to	another	object	

Sept	26,	2016	 Sprenkle	-	CSCI209	 22	

java.lang.Comparable

• Any	object	that	is	(inherits)	Comparable must	
have	a	method	named	compareTo()	

• Returns:	
Ø Return	a	nega,ve	integer	if	the	this	object	is	less	than	the	
object	passed	as	a	parameter	

Ø Return	a	posi,ve	integer	if	the	this	object	is	greater	than	
the	object	passed	as	a	parameter		

Ø Return	a	0	if	the	two	objects	are	equal	

public interface Comparable {
int compareTo(Object other);

}

Javadoc API of Comparable says which classes implement

9/26/16	

12	

Sept	26,	2016	 Sprenkle	-	CSCI209	 23	

Implemen,ng	an	Interface	
• In	the	class	defini,on,	specify	that	the	class	will	
implement the	specific	interface	

	
• Provide	a	defini,on	for	all	methods	specified	in	
interface	

public class Chicken implements Comparable

How to determine Chicken order?

Sept	26,	2016	 Sprenkle	-	CSCI209	 24	

Comparable Chickens	
 One	way:	order	by	height		

What if otherObject is not a Chicken?

public class Chicken implements Comparable {
 . . .
 public int compareTo(Object otherObject) {
 Chicken other = (Chicken) otherObject;
 if (height < other.getHeight())

return –1;
if (height > other.getHeight())

return 1;
return 0;
// simpler: return height-other.getHeight()

 }
}

We have a better way to handle soon…

9/26/16	

13	

Sept	26,	2016	 Sprenkle	-	CSCI209	 25	

Tes,ng	for	Interfaces	

• Use	the	instanceof operator	to	see	if	an	
object	implements	an	interface	
Ø e.g.,	to	determine	if	an	object	can	be	compared	to	
another	object	using	the	Comparable	interface	

if (obj instanceof Comparable) {
// runs if whatever class obj is an instance of
// implements the Comparable interface

}
else {

// runs if it does not implement the interface
}

Sept	26,	2016	 Sprenkle	-	CSCI209	 26	

Interface	Object	Variables	
• Can	use	an	object	variable	to	refer	to	an	object	of	any	
class	that	implements	an	interface	

• Using	this	object	variable,	can	only	access	the	interface’s	
methods	

• For	example…	

Object obj;
…
if (obj instanceof Comparable) {

Comparable comp = (Comparable) obj;
boolean res = comp.compareTo(obj2);

}

9/26/16	

14	

Sept	26,	2016	 Sprenkle	-	CSCI209	 27	

Interface	Defini,ons	

• Do	not	need	to	specify	methods	as	public
Ø Interface	methods	are	public by	default	

public interface Comparable {
int compareTo(Object other);

}

Sept	26,	2016	 Sprenkle	-	CSCI209	 28	

Interface	Defini,ons	and	Inheritance	
• Can	extend	interfaces	

Ø Allows	a	chain	of	interfaces	that	go	from	general	to	
more	specific	

• For	example,	define	an	interface	for	an	object	
that	is	capable	of	moving:	

public interface Movable {
void move(double x, double y);

}

9/26/16	

15	

Sept	26,	2016	 Sprenkle	-	CSCI209	 29	

Interface	Defini,ons	and	Inheritance	
• A	powered	vehicle	is	also	Movable

Ø Must	also	have	a	milesPerGallon() method,	
which	will	return	its	gas	mileage	

public interface Powered extends Movable {
double milesPerGallon();

}

Sept	26,	2016	 Sprenkle	-	CSCI209	 30	

Constants	in	an	Interface	
• If	a	variable	is	specified	in	an	interface,	it	is	
automa,cally	a	constant:	
Ø public static final variable

• An	object	that	implements	Powered	
interface	has	a	constant	SPEED_LIMIT	
defined	

public interface Powered extends Movable {
double milesPerGallon();
double SPEED_LIMIT = 95;

}

9/26/16	

16	

Sept	26,	2016	 Sprenkle	-	CSCI209	 31	

Interface	Defini,ons	and	Inheritance	
• Powered	interface	extends	Movable	interface	
• An	object	that	implements	Powered	interface	
must	sa,sfy	all	requirements	of	that	interface	as	
well	as	the	parent	interface.	
Ø A	Powered	object	must	have	a	
milesPerGallon()	and	move() method	

Sept	26,	2016	 Sprenkle	-	CSCI209	 32	

Mul,ple	Interfaces	
• A	class	can	implement	mul,ple	interfaces	

Ø Must	fulfill	the	requirements	of	each	interface	

• But	NOT	possible	with	inheritance	
Ø A	class	can	only	extend	(or	inherit	from)	one	class	

public final class String implements
Serializable, Comparable, CharSequence { …

9/26/16	

17	

Sept	26,	2016	 Sprenkle	-	CSCI209	 33	

Benefits	of	Interfaces	
• Abstrac,on	

Ø Separate	the	interface	from	the	implementa,on	

• Allow	easier	type	subs,tu,on	
Ø We’ll	see	this	with	Collec,ons	

• Can	implement	mul,ple	interfaces	

Sept	26,	2016	 Sprenkle	-	CSCI209	 34	

Interface	Summary	
• Contain	only	object	(not	class)	methods	
• All	methods	are	public

Ø Implied	if	not	explicit	

• Fields	are	constants	that	are	static	and	
final

• A	class	can	implement	mul,ple	interfaces	
Ø Separated	by	commas	in	defini,on	

9/26/16	

18	

Using	an	Interface	or	Abstract	Class	

ü Any	class	can	use	
ü  Can	implement	mul,ple	

interfaces	
• No	implementa,on	
- Implemen,ng	methods	
mul,ple	,mes	
- Adding	a	method	to	
interface	will	break	classes	
that	implement	

• Contain	par,al	
implementa,on	
- Can’t	extend/subclass	
mul,ple	classes	

ü Add	non-abstract	methods	
without	breaking	subclasses		

Sept	26,	2016	 Sprenkle	-	CSCI209	 35	

Interfaces	 Abstract	Classes	

Sept	26,	2016	 Sprenkle	-	CSCI209	 36	

One	Op,on:	Use	Both!	
• Define	interface,	e.g.,	MyInterface
• Define	abstract	class,	e.g.,	
AbstractMyInterface
Ø Implements	interface	
Ø Provides	implementa,on	for	some	methods	

9/26/16	

19	

Abstract	Classes	and	Interfaces	
• Important	structures	in	Java	

Ø Make	code	easier	to	change	

• Will	return	to/apply	these	ideas	throughout	the	
course	

• Concepts	are	used	in	many	languages	besides	
Java	

Sept	26,	2016	 Sprenkle	-	CSCI209	 37	

TODO	
• Assignment	5:	due	Wednesday	

Sept	26,	2016	 Sprenkle	-	CSCI209	 38	

