
9/28/16	

1	

Objec-ves	
• Packaging	
• Collec-ons	
• Generics	
• Eclipse	

Sept	28,	2016	 Sprenkle	-	CSCI209	 1	

Itera-on	over	Code	
• Assignment	5	
• Demonstrates	typical	design/implementa-on	
process	
Ø Start	with	your	original	code	design	

•  Inheritance	from	GamePiece	class	
Ø Realize	it	could	be	designed	bePer	

• Make	GamePiece	class	abstract	
• Use	an	array	of	GamePiece	objects	
• Easier	to	add	new	func-onality	to	Game	

• Major	part	of	problem-solving	is	figuring	out	how	
to	break	problem	into	smaller	pieces	
Sept	28,	2016	 Sprenkle	-	CSCI209	 2	

9/28/16	

2	

Sept	28,	2016	 Sprenkle	-	CSCI209	 3	

Review	
• How	do	we	specify	that	a	class	or	a	method	
cannot	be	subclassed/overridden?	

• Compare	and	contrast	abstract	classes	and	
interfaces	

• When	should	a	class	be	abstract?	
Ø If	you	extend	an	abstract	class,	do	you	have	to	
override	all	abstract	methods?	

• When	should	you	create/use	an	interface?	
• What	is	the	keyword	for	specifying	that	your	class	
adheres	to	an	interface?	

PACKAGES	

Sept	28,	2016	 Sprenkle	-	CSCI209	 4	

9/28/16	

3	

Sept	28,	2016	 Sprenkle	-	CSCI209	 5	

Packages	
• Hierarchical	structure	of	Java	classes	

Ø Directories	of	directories	

• Use	import	to	access	packages	

java

net

lang

util

Object

Date

Fully	qualified	name:	java.lang.String

String

Standard	Prac-ce	
• To	reduce	chance	of	a	conflict	between	names	of	
classes,	put	classes	in	packages	

• Use	package	keyword	to	say	that	a	class	
belongs	to	a	package:	
Ø package java.util;
Ø First	line	in	class	file	

• Typically,	use	a	unique	prefix,	similar	to	domain	
names	
Ø com.ibm
Ø edu.wlu.cs.logic

Sept	28,	2016	 Sprenkle	-	CSCI209	 6	

9/28/16	

4	

Impor-ng	Packages	
• Can	import	one	class	at	a	-me	or	all	the	classes	
within	a	package	

• Examples:		

Ø *	form	may	increase	compile	-me	
• BUT,	no	effect	on	run--me	performance	

	

Sept	28,	2016	 Sprenkle	-	CSCI209	 7	

import java.util.Date;
import java.io.*; Import entire package

COLLECTIONS	

Sept	28,	2016	 Sprenkle	-	CSCI209	 8	

9/28/16	

5	

Collec-ons	
• Some-mes	called	containers	
• Group	mul-ple	elements	into	a	single	unit	
• Store,	retrieve,	manipulate,	and	communicate	
aggregate	data	

• Represent	data	items	that	form	a	natural	group	
Ø Poker	hand	(a	collec-on	of	cards)	
Ø Mail	folder	(a	collec-on	of	messages)	
Ø Telephone	directory	(a	mapping	of	names	to	phone	
numbers)	

Sept	28,	2016	 Sprenkle	-	CSCI209	 9	

Java	Collec-ons	Framework	
• Unified	architecture	for	represen-ng	and	
manipula-ng	collec-ons	

• More	than	arrays	
Ø More	flexible,	func-onality,		dynamic	sizing	

• java.util

Sept	28,	2016	 Sprenkle	-	CSCI209	 10	

9/28/16	

6	

Collec-ons	Framework	
• Interfaces	

Ø Abstract	data	types	that	represent	collec-ons	
Ø Collec-ons	can	be	manipulated	independently	of	
implementa-on	 		

• Implementa9ons	
Ø Concrete	implementa-ons	of	collec-on	interfaces	
Ø Reusable	data	structures	

• Algorithms	
Ø Methods	that	perform	useful	computa-ons	on	
collec-ons,	e.g.,	searching	and	sor-ng	

Ø Reusable	func-onality	
Ø Polymorphic:	same	method	can	be	used	on	many	
different	implementa-ons	of	collec-on	interface	

Sept	28,	2016	 Sprenkle	-	CSCI209	 11	

Core	Collec-on	Interfaces	
• Encapsulate	different	types	of	collec-ons	

Sept	28,	2016	 Sprenkle	-	CSCI209	 12	

9/28/16	

7	

GENERICS	

Sept	28,	2016	 Sprenkle	-	CSCI209	 13	

Example	of	the	Way	It	Was	
• Before	Java	1.5	
• Doesn’t	know	what	type	of	data	is	in	the	List	

	
	
	
	

Sept	28,	2016	 Sprenkle	-	CSCI209	 14	

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

• Have to cast object we get out of list to desired type
• What if someone put in an object of wrong type

previously?
• Have similar issue in Python

Returns an Object

9/28/16	

8	

Generic	Collec-on	Interfaces	
• Added	to	1.5	
• Declara-on	of	the	Collection	interface:	

Ø <E> means	interface	is	generic	for	element	class	
• When	declare	a	Collection,	specify	type	of	
object	it	contains	
Ø Make	sure	put	in,	get	out	appropriate	type	
Ø Allows	compiler	to	verify	that	object’s	type	is	correct	

•  Reduces	errors	at	run-me	
• Example,	a	hand	of	cards:	

Sept	28,	2016	 Sprenkle	-	CSCI209	 15	

List<Card> hand = new ArrayList<Card>();

Type
parameter

Always declare type

public interface Collection<E> …

List<Card> hand = new ArrayList<>();New in Java 7:

Comparable	Interface	
• Also	uses	Generics	

Sept	28,	2016	 Sprenkle	-	CSCI209	 16	

public interface Comparable<T>

int compareTo(T o)

The type it compares

Chicken.java

9/28/16	

9	

Comparing:	Before	&	Aier	Generics	
• Before	Generics	

	

• Aier	Generics	

Sept	28,	2016	 Sprenkle	-	CSCI209	 17	

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

ü  Improved readability and robustness

Types	Allowed	with	Generics	
• Can	only	contain	Objects,	not	primi-ve	types	

Ø Autoboxing	and	Autounboxing	to	the	rescue!	
• Example:	If	collec-ng	ints,	use	Integer

Sept	28,	2016	 Sprenkle	-	CSCI209	 18	

9/28/16	

10	

WRAPPER	CLASSES	

Sept	28,	2016	 Sprenkle	-	CSCI209	 19	

Sept	28,	2016	 Sprenkle	-	CSCI209	 20	

Wrapper	Classes	
• Wrapper	class	for	each	primi-ve	type	
• Some-mes	need	an	instance	of	an	Object	

Ø To	store	in	Lists	and	other	Collec-ons	
• Include	func-onality	of	parsing	their	respec-ve	
data	types		

int x = 10;
Integer y = new Integer(10);

9/28/16	

11	

Sept	28,	2016	 Sprenkle	-	CSCI209	 21	

Wrapper	Classes	
• Autoboxing – automa-cally	create	a	wrapper	object	

• Autounboxing – automa-cally	extract	a	primi-ve	
type	
Integer x = new Integer(11);
int y = x.intValue();
int z = x; // implicitly, x is x.intValue();

// implicitly 11 converted to
// new Integer(11);
Integer y = 11;

Convert right side to whatever is needed on the left

Effec7ve	Java:	Unnecessary	Autoboxing	

• Can	you	find	the	inefficiency	from	object	
crea-on?	

		
		

• How	to	fix?	
Sept	28,	2016	 Sprenkle	-	CSCI209	 22	

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

9/28/16	

12	

Effec7ve	Java:	Unnecessary	Autoboxing	

• Can	you	find	the	inefficiency	from	object	
crea-on?	

		
		

• How	to	fix?	

Sept	28,	2016	 Sprenkle	-	CSCI209	 23	

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Constructs	231	Long instances	

Autobox.java

Effec7ve	Java:	Unnecessary	Autoboxing	

• Can	you	find	the	inefficiency	from	object	
crea-on?	

		
		

• How	to	fix?	
• Lessons:		

Sept	28,	2016	 Sprenkle	-	CSCI209	 24	

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

• Prefer primitives to boxed primitives
• Watch for unintentional autoboxing

Constructs	231	Long instances	

Autobox.java

9/28/16	

13	

LISTS	

Sept	28,	2016	 Sprenkle	-	CSCI209	 25	

List	
• An	ordered	collec-on	of	elements	
• Can	contain	duplicate	elements	
• Has	control	over	where	objects	are	stored	in	the	
list

Sept	28,	2016	 Sprenkle	-	CSCI209	 26	

9/28/16	

14	

List Interface	
• boolean add(<E> o)

Ø Boolean	so	that	List	can	refuse	some	elements	
•  e.g.,	refuse	adding	null elements	

• <E> get(int index)
Ø Returns element at the position index
Ø Different	from	Python:	no	shorthand	

• Can’t	write	list[pos]
• int size()

Ø Returns the number of elements in the list
• And more!

Ø contains, remove, toArray, …

Sept	28,	2016	 Sprenkle	-	CSCI209	 27	

Common List Implementa-ons	
• ArrayList

Ø  Resizable	array	
Ø Used	most	frequently	
Ø  Fast	

• LinkedList
Ø Use	if	adding	elements	to	

ends	of	list	
Ø Use	if	oien	delete	from	

middle	of	list	
Ø  Implements	Deque	and	

other	methods	so	that	it	
can	be	used	as	a	stack	or	
queue		

Sept	28,	2016	 Sprenkle	-	CSCI209	 28	

How would you find the other implementations of List?

9/28/16	

15	

Implementa-on	vs.	Interface	

• Preferred	Style:	
1.  Choose	an	implementa-on	
2.  Assign	collec-on	to	variable	of	corresponding	

interface	type	

	
• Methods	should	accept	interfaces—not	
implementa-ons	

Sept	28,	2016	 Sprenkle	-	CSCI209	 29	

Implementation choice only affects performance

Interface variable = new Implementation();

Why is this the preferred style?

Implementa-on	vs.	Interface	

• Preferred	Style:	
1.  Choose	an	implementa-on	
2.  Assign	collec-on	to	variable	of	corresponding	interface	

type	
• Why?	

Ø Program	does	not	depend	on	a	given	implementa-on’s	
methods	
•  Access	only	using	interface’s	methods	

Ø Programmer	can	change	implementa-ons	
•  Performance	concerns	or	behavioral	details	

Sept	28,	2016	 Sprenkle	-	CSCI209	 30	

Implementation choice only affects performance

9/28/16	

16	

Discussion	of	Deck	Class	

Sept	28,	2016	 Sprenkle	-	CSCI209	 31	

cards.Deck.java

SETS	

Sept	28,	2016	 Sprenkle	-	CSCI209	 32	

9/28/16	

17	

Set Interface	
• No	duplicate	elements	

Ø Needs	to	determine	if	two	elements	are	“logically”	
the	same	(equals method)	

• Models	mathema-cal	set	abstrac-on	

Sept	28,	2016	 Sprenkle	-	CSCI209	 33	

Set Interface	
• boolean add(<E> o)

Ø Add	to	set,	only	if	not	already	present	
• int size()

Ø Returns the number of elements in the list
• And more! (contains, remove,
toArray, …)
Ø Note: no get method -- get #3 from the set?

Sept	28,	2016	 Sprenkle	-	CSCI209	 34	

9/28/16	

18	

Some	Set Implementa-ons	
• HashSet

Ø  Implements	set	using	hash	
table	
•  add,	remove,	and	
contains	each	execute	in	
O(1)	-me		

Ø Used	more	frequently	
Ø  Faster	than	TreeSet
Ø No	ordering	

• TreeSet
Ø  Implements	set	using	a	

tree	
•  add,	remove,	and	
contains	each	execute	in				
O(log	n)	-me		

Ø  Sorts	

Sept	28,	2016	 Sprenkle	-	CSCI209	 35	

FindDuplicates	Problem	
• From	the	array	of	command-line	arguments,	
iden-fy	the	duplicates		

Sept	28,	2016	 Sprenkle	-	CSCI209	 36	

public static void main(String args[]) {

}

9/28/16	

19	

FindDuplicates	

Sept	28,	2016	 Sprenkle	-	CSCI209	 37	

public static void main(String args[]) {
Set<String> s = new HashSet<String>();
for (String a : args) {
if (!s.add(a)) {

System.out.println(
"Duplicate detected: " + a);

}
}
System.out.println(s.size() +
 " distinct words detected: " + s);

}

How much does code changes if s is a TreeSet?

Sept	28,	2016	 Sprenkle	-	CSCI209	 38	

9/28/16	

20	

2011	Soiware	System	Award	

Sept	28,	2016	 Sprenkle	-	CSCI209	 39	

created by IBM.
Eclipse changed the way builders think about tools by
defining a set of user interaction paradigms for which
domain-specific variants are plugged in and customized for
their tool.
Conceived to address perceived shortcomings in
proprietary software development tools, Eclipse allowed
developers to seamlessly integrate their own extensions,
specializations, and personalizations. …

The Software System Award is given to an institution or
individuals recognized for developing software systems

that have had a lasting influence, reflected in
contributions to concepts and/or commercial acceptance.

2011	Soiware	System	Award	

Sept	28,	2016	 Sprenkle	-	CSCI209	 40	

It revolutionized the notion of an Integrated Development
Environment (IDE) by identifying the conceptual kernel
underlying any IDE. �

Eclipse was designed as an open, extensible platform for
application development tools with a Java IDE built on top. In
2004 Eclipse became a not-for-profit corporation. �

The IBM Eclipse team included John Wiegand, Dave Thomson,
Gregory Adams, Philippe Mulet, Julian Jones, John Duimovich,
Kevin Haaland, Stephen Northover (now with Oracle), and
Erich Gamma (now with Microsoft).

9/28/16	

21	

• Open	source	integrated	development	environment	
(IDE)	for	Java	

• Has	market	share	for	Java	IDEs	
• Described	as	“an	open	extensible	IDE	for	anything	
and	nothing	in	par-cular”	

• Provides	a	robust	Java	development	environment		
• Incorporates	popular	soiware	development	tools	
like	JUnit	and	CVS	
Ø More	on	those	later	this	semester	

• Plugins	allow	extensibility	

Sept	28,	2016	 Sprenkle	-	CSCI209	 41	

http://www.eclipse.org/

Project/Code	Organiza-on	
•  workspace directory	contains	all	projects	

Ø Located	in	your	home	directory,	unless	you	specified	
otherwise	

• Use	projects	to	organize	your	code	
• Within	a	project	

Ø src/	directory	contains	.java files	
Ø bin/	directory	contains	.class files	

• Oien	hidden	in	GUI	

Sept	28,	2016	 Sprenkle	-	CSCI209	 42	

9/28/16	

22	

Java	Made	Easier	
• Crea-ng	class’s	basic	func-onality	

Ø See	Source and	Refactor menus	
• Gives	you	a	list	of	methods	for	an	object	

Ø Aier	you	type	object.	
Ø Then	shows	parameters	for	methods	

• Automa-cally	creates	template	of	Javadoc	
Ø When	you	type	/**

• Autocomple-on	of	variables,	methods	
• Formaqng	code	…	
• Shows	unused	fields/variables	
• Shows	compiler	errors	
• …	

Sept	28,	2016	 Sprenkle	-	CSCI209	 43	

Eclipse	Demo	
• Show	Birthday	class	

Ø Override	equals	and	toString	methods	
• Create	a	new	class	

Ø Generate	main	method,	Comments	
• Create	a	String	object,	see	methods	used	

• Demonstrate	refactoring	
Ø Rename	a	field	
Ø Extract	a	method	(month	name)	

• Run	the	Birthday	Class	(main)	
Ø Command	line	arguments	

Sept	28,	2016	 Sprenkle	-	CSCI209	 44	

Why can a Java IDE provide�
this functionality?

9/28/16	

23	

Eclipse	Hints	
• Aier	you	have	wriPen	a	method,	type	

before	the	method,	and	then	hit	enter	and	the	
Javadocs	template	will	be	automa-cally	generated	
for	you	

• Use	command-spacebar	for	possible	comple-ons	

Sept	28,	2016	 Sprenkle	-	CSCI209	 45	

/**

Installing	at	Home	
• Go	to	www.eclipse.org
• Select	“Downloads”	

Ø Get	the	Eclipse	Installer	for	Eclipse	Neon	
• Then	“Eclipse	IDE	for	Java	EE	Developers”	

Ø For	developing	web	applica-ons	and	other	enterprise	
applica-ons	

Ø We’re	using	Java	8	for	the	code	we	write	
Ø May	need	to	install	more	than	one	version	of	Java	to	
run	

Sept	28,	2016	 Sprenkle	-	CSCI209	 46	

9/28/16	

24	

Eclipse	Discussion	
• Helpful	hints	

Ø Control-spacebar	
Ø Format	the	file	
Ø Auto-templates	for	Javadocs	

Sept	28,	2016	 Sprenkle	-	CSCI209	 47	

Looking	Ahead	
• Assignment	6	–	due	next	Wednesday	

Ø Mul-ple	components	
• Eclipse	prac-ce	
• Collec-ons	
• Generics	
• Packages	
• …	

Ø Keep	building,	based	on	what	we’re	doing	in	class	

Sept	28,	2016	 Sprenkle	-	CSCI209	 48	

