
9/30/16	

1	

Objec-ves	
• Collec-ons	

Ø Maps	

• Traversing	
• Excep-ons	

Sept	30,	2016	 Sprenkle	-	CSCI209	 1	

“Rather than teach everyone to code, �
let's teach them to think. �
The coding can come later; it's easier.” �
 - @rob_pike

On my Twitter feed:

Analysis	of	equals methods	

Sept	30,	2016	 Sprenkle	-	CSCI209	 2	

public boolean equals(Object o){
if(((Birthday) o).getDay() != this.getDay())

return false;

if(((Birthday) o).getMonth() != this.getMonth())
return false;

return true;
}

public boolean equals(Object o) {
Birthday other = (Birthday) o;

 if (this.month == other.month && this.day ==
other.day)

return true;
else

return false;
}

9/30/16	

2	

Using	booleans	in	if	statements	

Sept	30,	2016	 Sprenkle	-	CSCI209	 3	

if(this.equals(that) == true) {
System.out.println("equal!");

}

if(this.equals(that)) {
System.out.println("equal!");

}

Review	
• What	are	the	3	components	of	the	Java	
Collec-on	Framework?	

• What	data	types	can	collec-ons	hold?	
• How	can	we	convert	a	primi-ve	type	into	its	
respec-ve	Wrapper	Object	type?	

• What	is	the	syntax	to	say	what	type	the	collec-on	
holds?	

• Why	did	I	wait	un-l	now	to	show	you	Eclipse?	

Sept	30,	2016	 Sprenkle	-	CSCI209	 4	

9/30/16	

3	

Eclipse	
• Very	helpful	–	a"er	you	know	what	you’re	doing	

Ø Gives	sugges-ons	for	fixes	
• You	need	to	think	through	what	the	appropriate	fix	is	

Sept	30,	2016	 Sprenkle	-	CSCI209	 5	

Eclipse	Hints	
• A\er	you	have	wri]en	a	method,	type	

before	the	method,	and	then	hit	enter	and	the	
Javadocs	template	will	be	automa-cally	generated	
for	you	

• Use	command-spacebar	for	possible	comple-ons	

Sept	30,	2016	 Sprenkle	-	CSCI209	 6	

/**

9/30/16	

4	

Eclipse	Discussion	
• Helpful	hints	

Ø Control-spacebar	
Ø Format	the	file	
Ø Auto-templates	for	Javadocs	

Sept	30,	2016	 Sprenkle	-	CSCI209	 7	

Review:	Collec-ons	Framework	
• Interfaces	

Ø Abstract	data	types	that	represent	collec-ons	
Ø Collec-ons	can	be	manipulated	independently	of	
implementa-on	 		

• Implementa.ons	
Ø Concrete	implementa-ons	of	collec-on	interfaces	
Ø Reusable	data	structures	

• Algorithms	
Ø Methods	that	perform	useful	computa-ons	on	
collec-ons,	e.g.,	searching	and	sor-ng	

Ø Reusable	func-onality	
Ø Polymorphic:	same	method	can	be	used	on	many	
different	implementa-ons	of	collec-on	interface	

Sept	30,	2016	 Sprenkle	-	CSCI209	 8	

9/30/16	

5	

Review:	Core	Collec-on	Interfaces	
• Encapsulate	different	types	of	collec-ons	

Sept	30,	2016	 Sprenkle	-	CSCI209	 9	

MAPS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 10	

9/30/16	

6	

Maps	
• Maps	keys	(of	type	<K>)	to	values	(of	type	
<V>)	

• No	duplicate	keys	
Ø Each	key	maps	to	at	most	one	value	

Sept	30,	2016	 Sprenkle	-	CSCI209	 11	

Map Interface	
• <V> put(<K> key, <V> value)
Ø Returns old value that key mapped to

• <V> get(Object key)
Ø Returns value at that key (or null if no

mapping)

• Set<K> keySet()
Ø Returns the set of keys

Sept	30,	2016	 Sprenkle	-	CSCI209	 12	

And more …

9/30/16	

7	

A few Map Implementa-ons	
• HashMap

Ø Fast	

• TreeMap
Ø Sor-ng	
Ø Key-ordered	itera-on	

• LinkedHashMap
Ø Fast	
Ø Inser-on-order	itera-on	

Sept	30,	2016	 Sprenkle	-	CSCI209	 13	

Declaring	Maps	
• Declare	types	for	both	keys	and	values	
• class HashMap<K,V>

Sept	30,	2016	 Sprenkle	-	CSCI209	 14	

Keys are Strings
Values are Lists of Strings

Map<String, List<String>> map
= new HashMap<>();

Keys are Strings
Values are Integers

Map<String, Integer> map = new HashMap<>();

9/30/16	

8	

ALGORITHMS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 15	

Collec-ons	Framework’s	Algorithms	
• Polymorphic	algorithms		
• Reusable	func-onality		
• Implemented	in	the	Collections class	

Ø Sta-c	methods,	1st	argument	is	the	collec-on	

Ø Similar	to	Arrays	class,	which	operates	on	arrays	

Sept	30,	2016	 Sprenkle	-	CSCI209	 16	

9/30/16	

9	

Overview	of	Available	Algorithms	
• Sor-ng	–	op-onal	Comparator
• Shuffling	
• Searching	–	binarySearch	
• Rou-ne	data	manipula-on:	reverse*,	copy*,	fill*,	
swap*,	addAll	

• Composi-on	–	frequency,	disjoint	
• Finding	min,	max	

Sept	30,	2016	 Sprenkle	-	CSCI209	 17	

* Only Lists

TRAVERSING	COLLECTIONS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 18	

9/30/16	

10	

Traversing	Collec-ons:	For-each	Loop	
• For-each	loop:	

• Valid	for	all	Collections
Ø Maps (and	its	implementa-ons)	are	not	
Collections
• But,	Map’s	keySet()	is	a	Set and	values()	is	a	
Collection

Sept	30,	2016	 Sprenkle	-	CSCI209	 19	

for (Object o : collection)
 System.out.println(o);

Or whatever data type is appropriate

Sept	30,	2016	 Sprenkle	-	CSCI209	 20	

Iterator:	Like	a	Cursor	
• Always	between	two	elements	

Iterator<Integer> i = list.iterator();
while(i.hasNext()) {

int value = i.next();
…

}

9/30/16	

11	

Iterator API
• <E> next()

Ø Get	the	next	element	

•  boolean hasNext()
Ø Are	there	more	elements?		

•  void remove()
Ø Remove	the	previous	element	
Ø Only	safe	way	to	remove	elements	during	itera-on	

• Not	known	what	will	happen	if	remove	elements	in	
for-each	loop	

Sept	30,	2016	 Sprenkle	-	CSCI209	 21	

Sept	30,	2016	 Sprenkle	-	CSCI209	 22	

Polymorphic	Filter	Algorithm	

static void filter(Collection c) {
 Iterator i = c.iterator();

while(i.hasNext()) {
// if the next element does not
// adhere to the condition, remove it
if (! condition(i.next())) {

 i.remove();
}

 }
}

Polymorphic: works regardless of Collection implementation

9/30/16	

12	

Sept	30,	2016	 Sprenkle	-	CSCI209	 23	

Traversing	Lists:	ListIterator
• Methods	to	traverse	list	backwards	too	

Ø hasPrevious()
Ø previous()

• To get a ListIterator:
Ø listIterator(int position)

• Pass	in	size()	as	posi-on	to	get	at	end	of	list	

Key difference

How	Not	to	Iterate	
• Don’t	use	get	to	access	List

Ø If	implementa-on	is	a	LinkedList,		
performance	is	reeeeeally	slow	

Sept	30,	2016	 Sprenkle	-	CSCI209	 24	

for (int i = 0; i < list.size(); i++) {
count += list.get(i); // do something

}

9/30/16	

13	

Benefits	of	Collec-ons	Framework	
• ?	

Sept	30,	2016	 Sprenkle	-	CSCI209	 25	

Benefits	of	Collec-ons	Framework	
• Provides	common,	well-known	interface	

Ø  Allows	interoperability	among	unrelated	APIs	
Ø  Reduces	effort	to	learn	and	to	use	new	APIs	for	different	

implementa-ons	
• Reduces	programming	effort:	provides	useful,	reusable	data	
structures	and	algorithms	

•  Increases	program	speed	and	quality:	provides	high-
performance,	high-quality	implementa-ons	of	data	structures	
and	algorithms;	interchangeable	implementa-ons	à	tuning	

• Reduces	effort	to	design	new	APIs:	use	standard	collec-on	
interface	for	your	collec-on		

• Fosters	soMware	reuse:	New	data	structures/algorithms	that	
conform	to	the	standard	collec-on	interfaces	are	reusable	

Sept	30,	2016	 Sprenkle	-	CSCI209	 26	

9/30/16	

14	

EXCEPTIONS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 27	

Sept	30,	2016	 Sprenkle	-	CSCI209	 28	

Errors	
• Programs	encounter	errors	when	they	run	

Ø Users	may	enter	data	in	the	wrong	form	
Ø Files	may	not	exist	
Ø Program	code	has	bugs!*	

• When	an	error	occurs,	a	program	should	do	one	
of	two	things:	
Ø Revert	to	a	stable	state	and	con-nue	
Ø Allow	the	user	to	save	data	and	then	exit	the	
program	gracefully	

* (Of course, not your programs)

9/30/16	

15	

Sept	30,	2016	 Sprenkle	-	CSCI209	 29	

Java	Method	Behavior	
• Normal/correct	case:	return	specified	return	type	
• Error	case:	does	not	return	anything,	throws
an	Exception
Ø An	excep-on	is	an	event	that	occurs	during	execu-on	
of	a	program	that	disrupts	normal	flow	of	program's	
instruc-ons

Ø Exception: object	that	encapsulates	error	
informa-on	

Similar to Python

Sept	30,	2016	 Sprenkle	-	CSCI209	 30	

Prin-ng	Stack	Trace	Example	

How helpful is this output?
How user friendly is it?

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

9/30/16	

16	

Prin-ng	Stack	Trace	Example	

•  Useful	for	debugging	your	code	
•  Generate/display	user-friendly	errors	in	finished	product	

•  O\en	requires	“higher-level	code”	to	handle	excep-on	

Sept	30,	2016	 Sprenkle	-	CSCI209	 31	

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

How helpful is this output?
How user friendly is it?

Sept	30,	2016	 Sprenkle	-	CSCI209	 32	

Excep-on	Classifica-on:	Error
• An	internal	error	
• Strong	conven-on:	reserved	for	JVM	

Ø JVM-generated	when	resource	exhaus-on	or	an	
internal	problem	
• Example:	Out	of	Memory	error		

• Program’s	code	should	not	and	can	not	throw	an	
object	of	this	type	

• Unchecked	excep-on		

When can that
happen in Java?

9/30/16	

17	

Sept	30,	2016	 Sprenkle	-	CSCI209	 33	

Excep-on	Classifica-on:	Exception
1.  RuntimeException:	something	that	

happens	because	of	a	programming	error	
Ø Unchecked	excep-on	
Ø Examples:	ArrayOutOfBoundsException,
NullPointerException,
ClassCastException

2.   Checked	excep-ons	
Ø A	well-wri]en	applica-on	should	an-cipate	and	
recover	from	
• Compiler	enforces	

Ø Examples:	IOException, SQLException

Error

Sept	30,	2016	 Sprenkle	-	CSCI209	 34	

Excep-on	Classifica-on	
Throwable

Exception

IOException
RuntimeException

SQLException

Others…

Unchecked
Ch

eck
ed

Checked	

Checked: All non-
RuntimeExceptions

Part	of	java.lang
package	

9/30/16	

18	

Types	of	Excep-ons	
Unchecked	
• Any	excep-on	that	derives	
from	Error or	
RuntimeException

•  Programmer	does	not	
create/handle	

•  Try	to	make	sure	that	they	
don’t	occur		

• O\en	indicates	programmer	
error	
Ø  E.g.,	precondi-on	viola-ons,	

not	using	API	correctly	

Checked	
• Any	other	excep-on
•  Programmer	creates	and	
handles	checked	excep-ons	

• Compiler-enforced	checking	
Ø  Improves	reliability*	

•  For	condi-ons	from	which	
caller	can	reasonably	be	
expected	to	recover	

Sept	30,	2016	 Sprenkle	-	CSCI209	 35	

Types	of	Unchecked	Excep-ons	
1.  Derived	from	the	class	Error

Ø Any	line	of	code	can	generate	because	it	is	an		
internal	error	

Ø Don’t	worry	about	what	to	do	if	this	happens	
2.  Derived	from	the	class	RuntimeException

Ø Indicates	a	bug	in	the	program	
Ø Fix	the	bug	
Ø Examples:	ArrayOutOfBoundsException,
NullPointerException,
ClassCastException

Sept	30,	2016	 Sprenkle	-	CSCI209	 36	

9/30/16	

19	

Checked	Excep-ons	
• Need	to	be	handled	by	your	program	

Ø Compiler-enforced	
Ø Improves	reliability*	

• For	each	method,	tell	the	compiler:	
Ø What	the	method	returns	
Ø What	could	possibly	go	wrong	

• Adver9se	the	excep-ons	that	a	method	throws	
• Helps	users	of	your	interface	know	what	method	does	
and	lets	them	decide	how	to	handle	excep-ons	

Sept	30,	2016	 Sprenkle	-	CSCI209	 37	

Discussion:	Why	Checked	and	Unchecked	
Excep-ons?	

• Why	do	we	have	excep-ons	that	the	compiler	
doesn’t	force	the	programmer	to	check?	
Ø Think	about	examples	of	unchecked	excep-ons	
(ArrayOutOfBoundsException,
NullPointerException,
ClassCastException)	and	when	those	
excep-ons	can	occur	

Sept	30,	2016	 Sprenkle	-	CSCI209	 38	

9/30/16	

20	

THROWING	EXCEPTIONS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 39	

Common	Excep-ons	
Name	 Purpose	
IllegalArgumentException When	caller	passes	in	inappropriate	

argument	
IllegalStateException Invoca-on	is	illegal	because	of	receiving	

object’s	state.		(Ex:	closing	a	closed	
window)	

• Both	inherit	from	RuntimeException
• May	seem	like	these	cover	everything	but	only	used	for	
certain	kinds	of	illegal	arguments	and	excep-ons	

• Not	used	when	
Ø  A	null	argument	passed	in;	should	be	a	
NullPointerException	

Ø  Pass	in	invalid	index	for	an	array;	should	be	an	
IndexOutOfBoundsException		

Sept	30,	2016	 Sprenkle	-	CSCI209	 40	

9/30/16	

21	

Factorial	Alterna-ves	

Sept	30,	2016	 Sprenkle	-	CSCI209	 41	

public static double factorial(int x) {
if(x < 0)

return 0.0;
double fact = 1.0;
while(x > 1) {

fact *= x;
x--;

}
return fact;

}

Factorial	Alterna-ves	

Sept	30,	2016	 Sprenkle	-	CSCI209	 42	

public static double factorial(int x) {
if(x < 0)

throw new IllegalArgumentException("x" +
"must be >= 0");

double fact = 1.0;
while(x > 1) {

fact *= x;
x--;

}
return fact;

}

9/30/16	

22	

Factorial	Alterna-ves	

Sept	30,	2016	 Sprenkle	-	CSCI209	 43	

public static double factorial(int x) {
if(x < 0)

throw new IllegalArgumentException("x" +
"must be >= 0");

double fact = 1.0;
while(x > 1) {

fact *= x;
x--;

}
return fact;

}

What are the pros and cons of these approaches?

IllegalArgumentException:	
Thrown to indicate that a method has
been passed an illegal or inappropriate

argument

Note, no throws clause
in method signature. Why?

Goal:	Failure	Atomicity	
• A\er	an	object	throws	an	excep-on,	the	object	
should	be	in	a	well-defined,	usable	state	
Ø A	failed	method	invoca-on	should	leave	object	in	state	
prior	to	invoca-on	

• Approaches:	
Ø Check	parameters/state	before	performing	opera-on(s)	
Ø Do	the	failure-prone	opera-ons	first	
Ø Use	recovery	code	to	“rollback”	state	
Ø Apply	to	temporary	object	first,	then	copy	over	values	

Sept	30,	2016	 Sprenkle	-	CSCI209	 44	

9/30/16	

23	

Prac-ce	

• How	should	we	implement	this	method?	
• What	are	some	problems	we	could	face?	

Sept	30,	2016	 Sprenkle	-	CSCI209	 45	

public void setBirthday(int month, int day) {

}

Prac-ce	

• How	should	we	implement	this	method?	
Ø Rule	of	thumb:	Handle	error	checking	first	

Sept	30,	2016	 Sprenkle	-	CSCI209	 46	

public void setBirthday(int month, int day) {

}

9/30/16	

24	

CATCHING	EXCEPTIONS	

Sept	30,	2016	 Sprenkle	-	CSCI209	 47	

Sept	30,	2016	 Sprenkle	-	CSCI209	 48	

Try/Catch	Block	

• The	simplest	way	to	catch	an	excep-on	
• Syntax:	

try {
code;
more code;

}
catch (ExceptionType e) {

error code for ExceptionType;
}
catch (ExceptionType2 e) {

error code for ExceptionType2;
}
…

Python equivalent?

9/30/16	

25	

Sept	30,	2016	 Sprenkle	-	CSCI209	 49	

Try/Catch	Block	

• Code	in	try	block	runs	first	
• If	try	block	completes	without	an	excep-on,	
catch	block(s)	are	not	executed	

• If	try	code	generates	an	excep-on	
Ø A	catch	block	runs	
Ø Remaining	code	in	try		block	is	not	executed	

• If	an	excep-on	of	a	type	other	than	
ExceptionType is	thrown	inside	try	block,	
method	exits	immediately*	

try {
code;
more code;

}
catch (ExceptionType e) {

error code for
ExceptionType

}

Sept	30,	2016	 Sprenkle	-	CSCI209	 50	

Try/Catch	Block	

• You	can	have	more	than	one	
catch	block	
Ø To	handle	>	1	type	of	
excep-on	

• If	excep-on	is	not	of	type	
ExceptionType1,	falls	to	
ExceptionType2,	and	so	
forth	
Ø Run	the	first	matching	catch	
block	

try {
code;
more code;

}
catch (ExceptionType e) {

error code for
ExceptionType

}
catch (ExceptionType2 e) {

error code
for ExceptionType2

}

Can catch any exception with Exception e
but won’t have customized messages

9/30/16	

26	

Sept	30,	2016	 Sprenkle	-	CSCI209	 51	

Try/Catch	Example	
public void read(BufferedReader in) {

try {
boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException!
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}
Prints out stack trace to method call

that caused the error

Sept	30,	2016	 Sprenkle	-	CSCI209	 52	

Try/Catch	Example	
public void read(BufferedReader in) {

try {
boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException!
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}
More precise catch may help pinpoint error

But could result in messier code

9/30/16	

27	

Sept	30,	2016	 Sprenkle	-	CSCI209	 53	

The	finally Block	

• Allows	you	to	clean	up	or	do	maintenance	before	
method	ends	(one	way	or	the	other)	
Ø E.g.,	closing	files	or	database	connec-ons	

try {
…

}
catch (Exception e) {

…
}
finally {

…
}

• Op-onal:	add	a	finally	block	
a\er	all	catch	blocks	
Ø Code	in	finally block	always	
runs	a\er	code	in	try and/or	
catch	blocks	
• A\er	try block	finishes	or,	if	an	
excep-on	occurs,	a\er	the	
catch	block	finishes	

FinallyTest.java

Sept	30,	2016	 Sprenkle	-	CSCI209	 54	

Prac-ce:	try/catch/finally Blocks	

try {
statement1;
statement2;

}
catch (EOFException e) {

statement3;
statement4;

}
finally {

statement5;
}

• Which	statements	run	if:	
Ø Neither	statement1	
nor	statement2	
throws	an	excep-on	

Ø statement1	throws	an	
EOFException

Ø statement2	throws	an	
EOFException

Ø statement1	throws	an	
IOException

9/30/16	

28	

What	to	do	with	a	Caught	Excep-on?	
• Dump	the	stack	a\er	the	excep-on	occurs	

Ø What	else	can	we	do?	

• Generally,	two	op-ons:	
1.  Catch	the	excep-on	and	recover	from	it	
2.  Pass	excep-on	up	to	whoever	called	it	

Sept	30,	2016	 Sprenkle	-	CSCI209	 55	

Summary:	Methods	Throwing	Excep-ons	
• API	documenta-on	tells	you	if	a	method	can	
throw	an	excep-on	
Ø If	so,	you	must	handle	it	

• If	your	method	could	possibly	throw	an	excep-on	
(by	genera-ng	it	or	by	calling	another	method	
that	could),	adver-se	it!			
Ø If	you	can’t	handle	every	error,	that’s	OK…let	
whoever	is	calling	you	worry	about	it	

Ø However,	they	can	only	handle	the	error	if	you	
adver-se	the	excep-ons	you	can’t	deal	with	

Sept	30,	2016	 Sprenkle	-	CSCI209	 56	

9/30/16	

29	

Programming	with	Excep-ons	
• Excep-on	handling	is	slow	

• Use	one	big	try block	instead	of	
nes-ng	try-catch blocks	
Ø Speeds	up	Excep-on	Handling	
Ø Otherwise,	code	gets	too	messy	

• Don't	ignore	excep-ons	(e.g.,	catch
block	does	nothing)	
Ø Be]er	to	pass	them	along	to	higher	calls		

Sept	30,	2016	 Sprenkle	-	CSCI209	 57	

try {
}
catch () {  
}
try {
}
catch () {  
}

try {
try {
}
catch () {  
}

}
catch () {  
}

try {
…
…

}
catch () {  
}

Sept	30,	2016	 Sprenkle	-	CSCI209	 58	

Benefits	of	Excep-ons?	

9/30/16	

30	

Sept	30,	2016	 Sprenkle	-	CSCI209	 59	

Benefits	of	Excep-ons	
• Force	error	checking/handling	

Ø Otherwise,	won’t	compile	
Ø Does	not	guarantee	“good”	excep-on	handling	

• Ease	debugging	
Ø Stack	trace	

• Separates	error-handling	code	from	“regular”	code	
Ø Error	code	is	in	catch	blocks	at	end	
Ø Descrip-ve	messages	with	excep-ons	

• Propagate	methods	up	call	stack	
Ø Let	whoever	“cares”	about	error	handle	it	

• Group	and	differen-ate	error	types	

Javadoc	Guidelines	about	@throws	
• Always	report	if	throw	checked	excep-ons	
• Report	any	unchecked	excep-ons	that	the	caller	
might	reasonably	want	to	catch	
Ø Excep-on:	NullPointerException	
Ø Allows	caller	to	handle	(or	not)	
Ø Document	excep-ons	that	are	independent	of	the	
underlying	implementa-on	

• Errors	should	not	be	documented	as	they	are	
unpredictable	

Sept	30,	2016	 Sprenkle	-	CSCI209	 60	

9/30/16	

31	

TODO	
• Assignment	6:	Due	Wednesday	

Ø Modifying	MediaItem	classes	
• Adding	implementa-on	of	Comparable
• Using	some	Collec-on	(of	your	choice)	to	maintain	
library	
Ø Jus-fy/explain	your	choice	

• Exam	1	
Ø Prepara-on	document	posted	

Sept	30,	2016	 Sprenkle	-	CSCI209	 61	

