Objectives

Collections
Maps
Traversing
Exceptions

On my Twitter feed:

“Rather than teach everyone to code,
let's teach them to think.

The coding can come later; it's easier”
- @rob_pike

Sept 30, 2016 Sprenkle - CSCI209

Analysis of equals methods

public boolean equals(Object o0){
if(((Birthday) 0).getDay() != this.getDay())
return false;

if(((Birthday) o).getMonth() != this.getMonth())
return false;
return true;

}

public boolean equals(Object o) {
Birthday other = (Birthday) o;
if (this.month == other.month && this.day ==
other.day)
return true;
else
return false;

}

Sept 30, 2016 Sprenkle - CSCI209

Using booleans in if statements

1f(this.equals(that) == true) {
System.out.println("equal!");

}

if(C this.equals(that)) {
System.out.println("equal!");

}

Sept 30, 2016 Sprenkle - CSCI209 3

Review

What are the 3 components of the Java
Collection Framework?

What data types can collections hold?

How can we convert a primitive type into its
respective Wrapper Object type?

What is the syntax to say what type the collection
holds?

Why did | wait until now to show you Eclipse?

Sept 30, 2016 Sprenkle - CSCI209 4

Eclipse

Very helpful — after you know what you’re doing

Gives suggestions for fixes
You need to think through what the appropriate fix is

Sept 30, 2016 Sprenkle - CSCI209

Eclipse Hints

After you have written a method, type
/**

before the method, and then hit enter and the
Javadocs template will be automatically generated

for you

Use command-spacebar for possible completions

Sept 30, 2016 Sprenkle - CSCI209 6

Eclipse Discussion

Helpful hints
» Control-spacebar
» Format the file
» Auto-templates for Javadocs

Sept 30, 2016 Sprenkle - CSCI209

Review: Collections Framework

Interfaces
» Abstract data types that represent collections
» Collections can be manipulated independently of
implementation
Implementations
» Concrete implementations of collection interfaces
» Reusable data structures
Algorithms

» Methods that perform useful computations on
collections, e.g., searching and sorting

» Reusable functionality
» Polymorphic: same method can be used on many
different implementations of collection interface

Sept 30, 2016 Sprenkle - CSCI209

Review: Core Collection Interfaces

“ Encapsulate different types of collections

Sept 30, 2016 Sprenkle - CSCI209 9

MAPS

Sept 30, 2016 Sprenkle - CSCI209 10

Maps

Maps keys (of type <K>) to values (of type
<V>)

No duplicate keys
Each key maps to at most one value

Sept 30, 2016 Sprenkle - CSCI209 11

Map Interface

<V> put(<K> key, <V> value)
Returns old value that key mapped to

<V> get(Object key)
Returns value at that key (or null if no
mapping)

Set<K> keySet()

Returns the set of keys
And more ...
Sept 30, 2016 Sprenkle - CSCI209 12

A few Map Implementations

HashMap
Fast

TreeMap
Sorting
Key-ordered iteration

LinkedHashMap
Fast
Insertion-order iteration

Sept 30, 2016 Sprenkle - CSCI209 13

Declaring Maps

Declare types for both keys and values

class HashMap<K,V>
Map<String, Integer> map = new HashMap<>();

Keys are Strings
Values are Integers

Map<String, List<String>> map

\\ = new HashMap<>();
Keys are Strings

Values are Lists of Strings

Sept 30, 2016 Sprenkle - CSCI209 14

ALGORITHMS

Sept 30, 2016 Sprenkle - CSCI209 15

Collections Framework’s Algorithms

Polymorphic algorithms
Reusable functionality

Implemented in the Collections class
» Static methods, 15t argument is the collection

» Similar to Arrays class, which operates on arrays

Sept 30, 2016 Sprenkle - CSCI209 16

Overview of Available Algorithms

Sorting — optional Comparator
Sthﬂlng * Only Lists
Searching — binarySearch

Routine data manipulation: reverse*, copy*, fill*,
swap™, addAll

Composition — frequency, disjoint
Finding min, max

Sept 30, 2016 Sprenkle - CSCI209 17

TRAVERSING COLLECTIONS

Sept 30, 2016 Sprenkle - CSCI209 18

Traversing Collections: For-each Loop

For-each IOOp: Or whatever data type is appropriate

for (Object o : collection)
System.out.println(o);

Valid for all Collections

Maps (and its implementations) are not
Collections

But, Map’s keySet() isa Set and values()isa
Collection

Sept 30, 2016 Sprenkle - CSCI209 19

Iterator: Like a Cursor

Always between two elements

Element(0) Element(1) Element(2) Element(3)

Index: 0 1 2

w
RS

Iterator<Integer> 1 = list.iterator();
while(i.hasNext()) {
int value = i.next();

Sept 30, 2016 Sprenkle - CSCI209 20

Iterator API
<E> next()

» Get the next element

boolean hasNext()

» Are there more elements?
void remove()

» Remove the previous element

» Only safe way to remove elements during iteration

Not known what will happen if remove elements in
for-each loop

Sept 30, 2016 Sprenkle - CSCI209 21

Polymorphic Filter Algorithm

static void filter(Collection c) {

Iterator 1 = c.iterator();

while(i.hasNext()) {
// if the next element does not
// adhere to the condition, remove it
if (! condition(i.next())) {

1.remove();

}

Polymorphic: works regardless of Collection implementation

Sept 30, 2016 Sprenkle - CSCI209 22

Traversing Lists: L1stIterator

Methods to traverse list backwards too
> hasPrevious()
»previous()

TogetalListIterator:

> listIterator(int position)
Pass in S1ze() as position to get at end of list

Element(0) Element(1) Element(2) Element(3)

Index: 0 1 2 3 4

Sept 30, 2016 Sprenkle - CSCI209 23

How Not to Iterate

Don’t use get to access List
> If implementation is a LinkedL1ist,

performance is reeeeeally slow

for (int 1 = 0; 1 < list ; 1++) {
count += list. T); // do something

Sept 30, 2016 Sprenkle - CSCI209 24

Benefits of Collections Framework

?

Sept 30, 2016 Sprenkle - CSCI209 25

Benefits of Collections Framework

Provides common, well-known interface
Allows interoperability among unrelated APIs
Reduces effort to learn and to use new APIs for different
implementations
Reduces programming effort: provides useful, reusable data
structures and algorithms
Increases program speed and quality: provides high-
performance, high-quality implementations of data structures
and algorithms; interchangeable implementations = tuning
Reduces effort to design new APIs: use standard collection
interface for your collection
Fosters software reuse: New data structures/algorithms that
conform to the standard collection interfaces are reusable

Sept 30, 2016 Sprenkle - CSCI209 26

EXCEPTIONS

Sept 30, 2016 Sprenkle - CSCI209 27

Errors

Programs encounter errors when they run

» Users may enter data in the wrong form

» Files may not exist

» Program code has bugs!*
When an error occurs, a program should do one
of two things:

» Revert to a stable state and continue

» Allow the user to save data and then exit the
program gracefully

* (Of course, not your programs)
Sept 30, 2016 Sprenkle - CSCI209 28

Java Method Behavior

Normal/correct case: return specified return type

Error case: does not return anything, throws

an Exception
An exception is an event that occurs during execution
of a program that disrupts normal flow of program's
instructions

Exception: object that encapsulates error
information

Similar to Python

Sept 30, 2016 Sprenkle - CSCI209 29

Printing Stack Trace Example

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

How helpful is this output?
How user friendly is it?

Sept 30, 2016 Sprenkle - CSCI209 30

Printing Stack Trace Example

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

How helpful is this output?
How user friendly is it?

Useful for debugging your code

Generate/display user-friendly errors in finished product
Often requires “higher-level code” to handle exception

Sept 30, 2016 Sprenkle - CSCI209 31

Exception Classification: Error

An internal error

Strong convention: reserved for JVM

JVM-generated when resource exhaustion or an
internal problem

Example: Out of Memory error

When can that
happen in Java?

Program’s code should not and can not throw an
object of this type

Unchecked exception

Sept 30, 2016 Sprenkle - CSCI209 32

Exception Classification: Exception

RuntimeException: something that
happens because of a programming error
»Unchecked exception
»Examples: ArrayOutOfBoundsException,
NullPointerException,
ClassCastException
Checked exceptions

» A well-written application should anticipate and
recover from

Compiler enforces
»Examples: IOException, SQLException

Sept 30, 2016 Sprenkle - CSCI209 33

Exception Classification Part of java.lang
package
ﬂ

2 :
S Error Exception

Upfcheckec

RuntimeException

Others... /N
Checked:All non-

RuntimeExceptions SQLException

Checked

Sept 30, 2016 Sprenkle - CSCI209 34

Types of Exceptions

Unchecked Checked
Any exception that derives Any other exception
from Error or Programmer creates and
RuntimeException handles checked exceptions
Programmer does not Compiler-enforced checking
create/handle Improves reliability*
Try to make sure that they For conditions from which
don’t occur caller can reasonably be
Often indicates programmer expected to recover
error

E.g., precondition violations,
not using API correctly

Sept 30, 2016 Sprenkle - CSCI209 35

Types of Unchecked Exceptions

Derived from the class Error

Any line of code can generate because it is an
internal error

Don’t worry about what to do if this happens

Derived from the class RuntimeException
Indicates a bug in the program
Fix the bug

Examples: ArrayOutOfBoundsException,
NullPointerException,
ClassCastException

Sept 30, 2016 Sprenkle - CSCI209 36

Checked Exceptions

Need to be handled by your program
Compiler-enforced
Improves reliability*

For each method, tell the compiler:
What the method returns
What could possibly go wrong
Advertise the exceptions that a method throws

Helps users of your interface know what method does
and lets them decide how to handle exceptions

Sept 30, 2016 Sprenkle - CSCI209 37

Discussion: Why Checked and Unchecked
Exceptions?

Why do we have exceptions that the compiler
doesn’t force the programmer to check?
Think about examples of unchecked exceptions
(ArrayOutOfBoundsException,
NullPointerException,

ClassCastException) and when those
exceptions can occur

Sept 30, 2016 Sprenkle - CSCI209 38

THROWING EXCEPTIONS

Sept 30, 2016 Sprenkle - CSCI209 39

Common Exceptions

I1legalArgumentException When caller passes in inappropriate
argument

I1llegalStateException Invocation is illegal because of receiving
object’s state. (Ex: closing a closed
window)

Both inherit from RuntimeException

May seem like these cover everything but only used for
certain kinds of illegal arguments and exceptions

Not used when

A null argument passed in; should be a
NullPointerkxception

Pass in invalid index for an array; should be an
IndexOutOfBoundsException

Sept 30, 2016 Sprenkle - CSCI209 40

Factorial Alternatives

public static double factorial(int x) {
if(x <0)
return 0.0;
double fact = 1.0;
while(x > 1) {
fact *= x;
X==3
ks

return fact;

Sept 30, 2016 Sprenkle - CSCI209 41

Factorial Alternatives

public static double factorial(int x) {
1f(x <0)
throw new IllegalArgumentException("x" +
"must be >= 0");
double fact = 1.0;
while(x > 1) {
fact *= x;
X--3
}

return fact;

Sept 30, 2016 Sprenkle - CSCI209 42

. . Note, no throws clause
Factorial Alternatives in method signature. Why?

public static double factorial(int x) {
1f(x <0)
throw new IllegalArgumentException("x" +
"must be >= 0");

double fact = 1.0; IllegalArgumentException:

whil e(x> 1) { Thrown to indicate that a method has
fact *= x; been passed an illegal or inappropriate
X--; argument

return fact;

}

What are the pros and cons of these approaches?

Sept 30, 2016 Sprenkle - CSCI209 43

Goal: Failure Atomicity

After an object throws an exception, the object
should be in a well-defined, usable state

A failed method invocation should leave object in state
prior to invocation

Approaches:

Check parameters/state before performing operation(s)
Do the failure-prone operations first
Use recovery code to “rollback” state

Apply to temporary object first, then copy over values

Sept 30, 2016 Sprenkle - CSCI209 44

Practice

public void setBirthday(int month, int day) {
}

How should we implement this method?
What are some problems we could face?

Sept 30, 2016 Sprenkle - CSCI209 45

Practice

public void setBirthday(int month, int day) {
}

How should we implement this method?
Rule of thumb: Handle error checking first

Sept 30, 2016 Sprenkle - CSCI209 46

CATCHING EXCEPTIONS

Sept 30, 2016 Sprenkle - CSCI209 47

Try/Catch Block

The simplest way to catch an exception
Syntax:

Python equivalent?

try {
code;
more code;

ks
catch (ExceptionType e) {

error code for ExceptionType;
ks

catch (ExceptionType2 e) {
error code for ExceptionTypel;
ks

Sept 30, 2016 Sprenkle - CSCI209 48

try {

Try/Catch Block code;

more code;

ks

catch (ExceptionType e) {
error code for
ExceptionType

ks

Code in try block runs first
If try block completes without an exception,
catch block(s) are not executed
If try code generates an exception
A catch block runs
Remaining code in try block is not executed
If an exception of a type other than

ExceptionType isthrown inside try block,
method exits immediately*

Sept 30, 2016 Sprenkle - CSCI209 49

Try/Catch Block

try { . You can have more than one
code;
nore code; catch block
1 To handle > 1 type of
catch (ExceptionType e) { exception
error code for .
ExceptionType If exception is not of type
1 ExceptionTypel, falls to
catch (ExceptionType2 e) { ExceptionTypeZ, and so
error code forth
for ExceptionTypel
3 Run the first matching catch
block

Can catch any exception with Exception e
but won’t have customized messages

Sept 30, 2016 Sprenkle - CSCI209 50

Try/Catch Example

public void read(BufferedReader in) {

try {
boolean done = false;
while (!done) {
String line=in.readlLine();
// above could throw IOException!
if (line == null)
done = true;
ks
ks

catch (IOException ex) {
ex.printStackTrace();

Prints out stack trace to method call
that caused the error
Sept 30, 2016 Sprenkle - CSCI209 51

Try/Catch Example

public void read(BufferedReader in) {

try {
boolean done = false;
while (!done) {
String line=in.readlLine();
// above could throw IOException!
if (line == null)
done = true;
ks
ks

catch (IOException ex) {
ex.printStackTrace();
ks

More precise catch may help pinpoint error
But could result in messier code

Sept 30, 2016 Sprenkle - CSCI209 52

The finally Block oy

Optional: add a finally block
after all catch blocks

»Code in finally block always %—‘inally g
runs after code in try and/or
catch blocks

After try block finishes or, if an
exception occurs, after the
catch block finishes

}
catch (Exception e) {

Allows you to clean up or do maintenance before
method ends (one way or the other)
»E.g., closing files or database connections

FinallyTest. java
53

Sept 30, 2016 Sprenkle - CSCI209

Practice: try/catch/finally Blocks

Which statements run if:

S »Neither statementl
statement2- nor statement_Z
throws an exception

}
catch (EOFException e) { »statementl throws an

tatement3; !
;ZéZiZM; EOFException
1};. 1y »statement?2 throws an
inally -
statements; EOFException
} »statementl throws an

IOException

Sept 30, 2016 Sprenkle - CSCI209 54

What to do with a Caught Exception?

Dump the stack after the exception occurs
What else can we do?

Generally, two options:
Catch the exception and recover from it
Pass exception up to whoever called it

Sept 30, 2016 Sprenkle - CSCI209 55

Summary: Methods Throwing Exceptions

APl documentation tells you if a method can
throw an exception
If so, you must handle it

If your method could possibly throw an exception
(by generating it or by calling another method
that could), advertise it!
If you can’t handle every error, that’s OK...let
whoever is calling you worry about it

However, they can only handle the error if you
advertise the exceptions you can’t deal with

Sept 30, 2016 Sprenkle - CSCI209 56

Programming with Exceptions

Exception handling is slow

Use one big try block instead of

nesting try-catch blocks
Speeds up Exception Handling
Otherwise, code gets too messy

}
catch OO {

Don't ignore exceptions (e.g., catch !

block does nothing) L7

Better to pass them along to higher calls

catch OO {
Sept 30, 2016 Sprenkle - CSCI209 }

Benefits of Exceptions?

Sept 30, 2016 Sprenkle - CSCI209 58

Benefits of Exceptions

Force error checking/handling

Otherwise, won’t compile

Does not guarantee “good” exception handling
Ease debugging

Stack trace
Separates error-handling code from “regular” code

Error code is in catch blocks at end

Descriptive messages with exceptions
Propagate methods up call stack

Let whoever “cares” about error handle it
Group and differentiate error types

Sept 30, 2016 Sprenkle - CSCI209 59

Javadoc Guidelines about @throws

Always report if throw checked exceptions
Report any unchecked exceptions that the caller
might reasonably want to catch

Exception: NuL1PointerException

Allows caller to handle (or not)

Document exceptions that are independent of the

underlying implementation
Errors should not be documented as they are
unpredictable

Sept 30, 2016 Sprenkle - CSCI209 60

TODO

Assignment 6: Due Wednesday
Modifying MediaItem classes
Adding implementation of Comparable

Using some Collection (of your choice) to maintain
library

» Justify/explain your choice

Exam 1
Preparation document posted

Sept 30, 2016 Sprenkle - CSCI209

61

