
10/11/16

1

Objec&ves	
• Java	wrap-up	

Ø Compila&on	benefits	
Ø Comparing	with	Python	

• So?ware	Development	

Oct 10, 2016 Sprenkle - CSCI209 1

Review	
• What	decisions	do	you	make	when	choosing	how	
to	use	Java	streams?	
Ø E.g.,	choosing	which	streams	to	create	for	your	I/O?	

• What	are	the	tradeoffs	to	Java’s	design	decisions	
on	streams?	

Oct 10, 2016 Sprenkle - CSCI209 2

10/11/16

2

COMPARATORS	

Oct 10, 2016 Sprenkle - CSCI209 3

Alterna&ve	Sor&ng	
• What	if	object	is	Comparable but	does	not	
sort	the	way	you	want?	
Ø Special	case	

• Don’t	want	to	change	class	
• Don’t	have	access	to	class	

Ø Example:	want	to	sort	strings	so	capital	and	
lowercase	leQers	are	the	same	

• Use	Comparator interface	

Oct 10, 2016 Sprenkle - CSCI209 4

10/11/16

3

Comparator<T> Interface	
•  Declares two methods:

Ø int compare(T o1, T o2)
•  Compare two objects and return a value as if we called
o1.compareTo(o2)

Ø boolean equals(Object other)
•  Check if this Comparator equals other

•  Overloaded versions of sort in Arrays and
Collections
Ø Arrays: void sort(Object[] array,
Comparator c)

Ø Collections: void sort(List list,
Comparator c)

Oct 10, 2016 Sprenkle - CSCI209 5

EmployeeNameComparator.java

Have default
from Object

COMPILATION	

Oct 10, 2016 Sprenkle - CSCI209 6

10/11/16

4

Review	
• How	is	compiling	different	from	interpre&ng?	

Ø What	does	the	compiler	do?	

Oct 10, 2016 Sprenkle - CSCI209 7

Python	Interpreter	
1.  Validates	Python	programming	language	expression(s)	

•  Enforces	Python	syntax	rules	
•  Reports	syntax	errors	

2.  Executes	expression(s)	

Oct 10, 2016 Sprenkle - CSCI209 8

Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no
syntax errors

10/11/16

5

Compiler
(javac)

Java	Compiler	

• Lexical	analysis,	parsing,	seman&c	analysis,	code	
genera*on,	and	code	op*miza*on	

• Code	op&miza&on:	dead	code	eliminator,	inline	
expansion,	constant	propaga&on,	…	

Oct 10, 2016 Sprenkle - CSCI209 9

Java
file

Java
class

Source code Executable code

Compiling	
•  Translates	high-level	programming	language	to	machine	
code	or	byte	code	
Ø  Java:	.java	à	.class	==	bytecode	

•  Compiler	op&miza&on	techniques	
Ø Generate	efficient	bytecode/machine	code	
Ø  Examples:	get	rid	of	unused	local	variables,	transform	loops,	

inline	method	calls	
Ø  In	Java:	sta&c	typing	for	addi&onal	gains	

•  Can	execute	generated	code	mul&ple	&mes	
Ø  Performance	gain	
Ø  Interpreted	à	have	to	re-verify	the	code	each	&me	executed	

Oct 10, 2016 Sprenkle - CSCI209 10

10/11/16

6

Compiler	Op&miza&on	Examples	
• What	is	the	op&miza&on?	

Ø How	does	it	make	the	code	more	efficient?	

• Why	is	it	okay	for	the	compiler	to	write	code	this	
way	but	not	for	you?	

Oct 10, 2016 Sprenkle - CSCI209 11

Compiler	Op&miza&on	Examples	

Oct 10, 2016 Sprenkle - CSCI209 12

for(int i = 0; i < 10; i++) {
int j = 10;
System.out.println(i + ", " + j);

}

int j = 10;
for(int i = 0; i < 10; i++) {

System.out.println(i + ", " + j);
}

for(int i = 0; i < 10; i++) {
System.out.println(i + ", " + 10);

}

10/11/16

7

Compiler	Op&miza&on	Examples	

Oct 10, 2016 Sprenkle - CSCI209 13

for(int i = 0; i < 10; i++) {
if(i == 0) {

System.out.println("Do this");
}
else {

System.out.println("Do that");
}

}
System.out.println("Do this");

for(int i = 1; i < 10; i++) {
System.out.println("Do that");

}
System.out.println("Do this");
System.out.println("Do that");
System.out.println("Do that");
System.out.println("Do that");
…

Compiler	Op&miza&on	Examples	

Oct 10, 2016 Sprenkle - CSCI209 14

public void f(int i) {
 a[0] = i + 0;
 a[1] = i * 0;
 a[2] = i - i;
 a[3] = 1 + i + 1;
}

public void f(int i) {
 a[0] = i;
 a[1] = 0;
 a[2] = 0;
 a[3] = i + 2;
}

10/11/16

8

Compiler	Op&miza&on	Examples	

Oct 10, 2016 Sprenkle - CSCI209 15

int add(int x, int y) {
 return x + y;
}

int sub(int x, int y) {
 return add(x, -y);
}

int sub(int x, int y) {
 return x + -y;
}

int sub(int x, int y) {
 return x - y;
}

Compiler	Tradeoffs	
• Upfront	costs	

Ø Searching	for	op&miza&ons	
Ø Make	op&miza&ons	

• Typically	not	Big-Oh	efficiency	improvements	(unless	
programmer	is	really	bad)	

•  Improved	run&me	

Oct 10, 2016 Sprenkle - CSCI209 16

10/11/16

9

LANGUAGE	COMPARISON	

Oct 10, 2016 Sprenkle - CSCI209 17

Language	Comparison	

Java	 Python	

Oct 10, 2016 Sprenkle - CSCI209 18

10/11/16

10

Language	Comparison	

Java	
•  En&rely	Object-
oriented*	

•  Sta&cally,	strongly	
typed	

•  Compiled	

Python	
•  Object-oriented	

Ø  Also	func&onal	programming	

•  Dynamically,	strongly	
typed	

•  Interpreted	

Oct 10, 2016 Sprenkle - CSCI209 19

Pros and cons of using each?

Summary:		
						Compiled	vs	Interpreted	Languages	

Compiled	
-  Spends	a	lot	of	&me	analyzing	

and	processing	the	program	
•  Resul&ng	executable	is	some	

form	of	machine-	specific	
binary	code	

•  Computer	hardware	interprets	
(executes)	resul&ng	code	

ü Program	execu&on	is	fast	
Ø  Efficient	machine/byte	code	

genera&on	
Ø  Performance	gains	

Interpreted	
ü Rela&vely	liQle	&me	spent	

analyzing	and	processing	
the	program	

•  Resul&ng	code	is	some	sort	
of	intermediate	code	

•  Another	program	interprets	
resul&ng	code	

-  Program	execu&on	is	
rela&vely	slow	

ü Faster	development/
prototyping	

Oct 10, 2016 Sprenkle - CSCI209 20

10/11/16

11

No	Silver	Bullet:	Essence	and	Accidents	of	
So?ware	Engineering		
“Of	all	the	monsters	that	fill	the	nightmares	of	our	folklore,	none	terrify	
more	than	werewolves,	because	they	transform	unexpectedly	from	the	
familiar	into	horrors.	For	these,	one	seeks	bullets	of	silver	that	can	
magically	lay	them	to	rest.		
	
“The	familiar	so?ware	project,	at	least	as	seen	by	the	nontechnical	
manager,	has	something	of	this	character;	it	is	usually	innocent	and	
straighhorward,	but	is	capable	of	becoming	a	monster	of	missed	
schedules,	blown	budgets,	and	flawed	products.	So	we	hear	desperate	
cries	for	a	silver	bullet--something	to	make	so?ware	costs	drop	as	rapidly	
as	computer	hardware	costs	do.		
	
“But,	as	we	look	to	the	horizon	of	a	decade	hence,	we	see	no	silver	bullet.	
There	is	no	single	development,	in	either	technology	or	in	management	
technique,	that	by	itself	promises	even	one	order-of-magnitude	
improvement	in	produc&vity,	in	reliability,	in	simplicity.	In	this	ar&cle,	I	
shall	try	to	show	why,	by	examining	both	the	nature	of	the	so?ware	
problem	and	the	proper&es	of	the	bullets	proposed.”	
	 Oct 10, 2016 Sprenkle - CSCI209 21

by Frederick P. Brooks, Jr., 1986

Who	is	Fred	Brooks?	
• UNC	Professor	
• Turing	Award	winner	
• “The	most	important	single	decision	I	ever	made	
was	to	change	the	IBM	360	series	from	a	6-bit	
byte	to	an	8-bit	byte,	thereby	enabling	the	use	of	
lowercase	leQers.	That	change	propagated	
everywhere.”	

Oct 10, 2016 Sprenkle - CSCI209 22

10/11/16

12

Tradi&onal	So?ware	Engineering	
Process:	Waterfall	Model	

Oct 10, 2016 Sprenkle - CSCI209 23

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Validate at each step
Goal: A stage is 100%
complete before moving to
next step

Feedback	in	Waterfall	Model	

Oct 10, 2016 Sprenkle - CSCI209 24

• Problems may be revealed
in later stages

• What happens if problems
aren’t revealed until
Acceptance?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

10/11/16

13

Itera&ve	Design	

Oct 10, 2016 Sprenkle - CSCI209 25

Design

Evaluate Implement

Get feedback
from users/
clients

Spiral	Model	
•  Idea:	smaller	prototypes	
to	test/fix/throw	away	
Ø  Finding	problems	early	

costs	less	
•  In	general…	

Ø  Break	func&onality	into	
smaller	pieces	

Ø  Implement	most	
depended-on	or	highest-
priority	features	first		

Oct 10, 2016 Sprenkle - CSCI209 26

Design

ImplementEvaluate

Prototypes

Radial dimension: cost[Boehm 86]

10/11/16

14

Prototypes	
• Purpose/Dimensions	

Ø Func&onality	
Ø  Interac&on	
Ø  Implementa&on	

• Fidelity:		
Ø Low:	omits	details	
Ø High:	closer	to	finished	project	
Ø Mul&-dimensional	

•  Breadth:	%	of	features	covered	
Ø Only	enough	features	for	certain	tasks	

• Depth:	degree	of	func&onality	
Ø Limited	choices,	canned	responses,	no	error	handling	

Oct 10, 2016 Sprenkle - CSCI209 27

From Nielsen, �
Usability Engineering

Low	Fidelity	
Prototypes	
• Media:	Paper	
• Examples:	storyboard,	
sketches,	flipbook,	
flow	diagram	

Oct 10, 2016 Sprenkle - CSCI209 28

10/11/16

15

High	Fidelity	Prototypes	
• Media:	Flash,	HTML	(non-interac&ve),	
PowerPoint,	Video	

• Examples:	Mockups,	Wizard	of	Oz		

Oct 10, 2016 Sprenkle - CSCI209 29

Virtual Peer for
Autistic Children

http://www.articulab.justinecassell.com/projects/samautism/index.html

How	to	Implement	an	Effec&ve	Solu&on	
• Understand	the	problem	(interact	with	people)	
• Understand	external	constraints	(interact	with	
people)	

• Design	an	effec&ve	solu&on	to	the	problem	
• While	designing	the	solu&on,	design	some	tests	
to	verify	that	the	problem	is	solved	(and	remains	
solved)	

• Code	the	effec&ve	solu&on	to	the	problem	
• Teach	other	team	members	about	your	solu&on	
to	the	problem	(interact	with	people)	

Oct 10, 2016 Sprenkle - CSCI209 30

10/11/16

16

Spiral	Model	Steps	
• Design	a	{method,	class,	package}	
•  Implement	the	{method,	class,	package}	
• Test	the	{method,	class,	package}	
• Fix	the	{method,	class,	package}	
• Deploy	the	{method,	class,	package}	
• Get	feedback	

Ø Probably	will	require	modifica&ons	to	design	
Ø May	even	need	to	rollback	a	previous	version	

• Repeat	
Oct 10, 2016 Sprenkle - CSCI209 31

Agile	Development	Framework:	Scrum	
• The	Scrum	framework	in	30	seconds	

Ø Product	owner	creates	priori&zed	wish	list,	a	product	
backlog	

Ø Team	works	in	a	sprint,	usually	2-4	weeks	
• During	planning,	team	picks	a	subset	of	wish	list,	a	sprint	
backlog,	and	decides	how	to	implement	those	pieces	

• Daily	Scrum:	team	meets	daily	to	assess	its	progress	
Ø ScrumMaster	keeps	the	team	focused	on	its	goal	

•  At	end	of	sprint,	work	should	be	poten&ally	shippable:		
Ø ready	to	hand	to	a	customer,	put	on	a	store	shelf,	or	show	to	
a	stakeholder	

•  The	sprint	ends	with	a	sprint	review	and	retrospec&ve	
Ø Repeat	sprint	

Oct 10, 2016 Sprenkle - CSCI209 32

https://www.scrumalliance.org/why-scrum

10/11/16

17

Agile	Development	Framework:	Tools	
• Trello	
• Kanban	

Oct 10, 2016 Sprenkle - CSCI209 33

Looking	Ahead	
• Assign	7	due	Wednesday	

Oct 10, 2016 Sprenkle - CSCI209 34

