Objectives

Testing

Oct 12, 2016 Sprenkle - CSCI209 1

No Silver Bullet: Essence and Accidents of
Software Englneering by Frederick P. Brooks,]r., 1986

“Of all the monsters that fill the nightmares of our folklore, none terrify
more than werewolves, because they transform unexpectedly from the
familiar into horrors. For these, one seeks bullets of silver that can
magically lay them to rest.

“The familiar software project, at least as seen by the nontechnical
manager, has something of this character; it is usually innocent and
straightforward, but is capable of becoming a monster of missed
schedules, blown budgets, and flawed products. So we hear desperate
cries for a silver bullet--something to make software costs drop as rapidly
as computer hardware costs do.

“But, as we look to the horizon of a decade hence, we see no silver bullet.
There is no single development, in either technology or in management
technique, that by itself promises even one order-of-magnitude
improvement in productivity, in reliability, in simplicity. In this article, |
shall try to show why, by examining both the nature of the software
problem and the properties of the bullets proposed.”

Oct 10, 2016 Sprenkle - CSCI209 2

Who is Fred Brooks?

UNC Professor
Turing Award winner

“The most important single decision | ever made
was to change the IBM 360 series from a 6-bit
byte to an 8-bit byte, thereby enabling the use of
lowercase letters. That change propagated
everywhere.”

Oct 10, 2016 Sprenkle - CSCI209 3

Traditional Software Engineering
Process: Waterfall Model

[Requirements]\
[Design]\
[Implementation]\

Integration]\
Validate at each step
Goal: A stage is 100% | Acceptance]\
complete before moving to
[Release/]

next step Maintenance

Oct 10, 2016 Sprenkle - CSCI209 4

Feedback in Waterfall Model

[Requirements J\
A\
‘[Design J\

Implementation J\
A
\ .
Integration
* Problems may be revealed 3
in later stages

. “[Acceptance
* What happens if problems 7
aren’t revealed until \{ Release/]

Acceptance!? Maintenance

Oct 10, 2016 Sprenkle - CSCI209 5

Iterative Design

Design

Get feedback
from users/

clients
Evaluate Implement

Oct 10, 2016 Sprenkle - CSCI209 6

Spiral Model

Design

Idea: smaller prototypes
to test/fix/throw away
» Finding problems early
costs less
In general...

» Break functionality into
smaller pieces

» Implement most
depended-on or highest-
priority features first

-

Prototypes

[Boehm 86] Radial dimension: cost
Oct 10, 2016 Sprenkle - CSCI209 7
Prototypes

Purpose/Dimensions
» Functionality

. horizontal
> Interaction L “’”"l iyt
" . vertical

» Implementation brototype scenario

back end

F|de||ty — different features
» Low: omits details From Nielsen,
» High: closer to finished project Usability Engineering

» Multi-dimensional
Breadth: % of features covered
» Only enough features for certain tasks
Depth: degree of functionality
» Limited choices, canned responses, no error handling

Oct 10, 2016 Sprenkle - CSCI209 8

LOW F|de||ty CONSUMER ISSUES STORYBOARD e PGE3
Prototypes

Media: Paper

Examples: storyboard,
sketches, flipbook,
flow diagram

Oct 10, 2016 Sprenkle - CSCI209 9

High Fidelity Prototypes

Media: Flash, HTML (non-interactive),
PowerPoint, Video

Examples: Mockups, Wizard of Oz

Virtual Peer for
Autistic Children

http://www.articulab.justinecassell.com/projects/samautism/index.html

How to Implement an Effective Solution

Understand the problem (interact with people)
Understand external constraints (interact with
people)

Design an effective solution to the problem

While designing the solution, design some tests
to verify that the problem is solved (and remains
solved)

Code the effective solution to the problem
Teach other team members about your solution
to the problem (interact with people)

Oct 10, 2016 Sprenkle - CSCI209 11

Spiral Model Steps

Design a {method, class, package}
Implement the {method, class, package}
Test the {method, class, package}

Fix the {method, class, package}

Deploy the {method, class, package}
Get feedback

Probably will require modifications to design
May even need to rollback a previous version

Repeat

Oct 10, 2016 Sprenkle - CSCI209 12

Agile Development Framework: Scrum

The Scrum framework in 30 seconds

» Product owner creates prioritized wish list, a product
backlog
» Team works in a sprint, usually 2-4 weeks

During planning, team picks a subset of wish list, a sprint
backlog, and decides how to implement those pieces
Daily Scrum: team meets daily to assess its progress

> ScrumMaster keeps the team focused on its goal
At end of sprint, work should be potentially shippable:

» ready to hand to a customer, put on a store shelf, or show to
a stakeholder

The sprint ends with a sprint review and retrospective

~ Repeat sprint https://www.scrumalliance.org/why-scrum

Oct 10, 2016 Sprenkle - CSCI209 13

SOFTWARE TESTING PROCESS

Oct 12, 2016 Sprenkle - CSCI209 14

A Bad Role Model
| DONT ALWAYS TEST MY

BUT WHEN 1 DO, 1 DOITIN I‘Illllllllfﬂllll.
STAY ON CALL MY FRIENDS

Oct 12, 2016 Sprenkle - CSCI209 http : //'i_mgur .com/HBSbris

: My .. . :
Microsoft & T Windows Vista Testing

Beyond their internal testing ...
5 million people beta tested
60+ years of performance testing
1 Billion+ Office 2007 sessions

Still, users found correctness, stability,
robustness, and security bugs

Oct 12, 2016 Sprenkle - CSCI209 16

Type 1 Bugs: Compile-Time

Syntax errors
» Missing semicolon, parentheses

Compiler notifies of error
Cheap, easy to fix

Oct 12, 2016 Sprenkle - CSCI209 17

Type 2 Bugs: Run-Time

Usually logic errors
Expensive to locate, fix

Oct 12, 2016 Sprenkle - CSCI209 18

Aside: Objections to “Bug” Terminology

IlBugH

» Sounds like it’s just an
annoyance

Can simply swat away
» Minimizes potential problems
» Hides programmer’s
responsibility
Alternative terms
» Defect
» Fault

Oct 12, 2016 Sprenkle - CSCI209

19

Software Testing Process

- prowan
Input

Program
Under Test

Test Case

Expected
Output

Test Suite: set of test cases

Oct 12, 2016 Sprenkle - CSCI209

pass or fail

Software Testing Process

S

Tester plays devil’s advocate

» Hopes to reveal problems in the program using
“good” test cases

» Better tester finds than a customer!

How is testing different from debugging!

Oct 12, 2016 Sprenkle - CSCI209 21

How Would You Test a Calculator
Program?

S

Operands, adds, subtracts, Numerical
operators, multiplies, divides Answer
expected

output

What test cases: input and expected output?

Oct 12, 2016 Sprenkle - CSCI209 22

Example Test Cases for Calculator Program

Basic Functionality “Tricky” Cases
» Addition » Divide by 0
» Subtraction » Negative Numbers
» Multiplication » Long sequences of
> Division operands, operators
> Order of operations » VERY large, VERY small
. numbers
Invalid Input
» Letters, not-operation
characters (&,S, ...)
Oct 12, 2016 Sprenkle - CSCI209 23
Types of Testing
(Non-Exhaustive)
Black-box testing Non-functional testing
White-box testing Acceptance testing

Ideas or definitions of any of these!?

Oct 12, 2016 Sprenkle - CSCI209 24

Types of Testing

(Non-Exhaustive)

Black-box testing Non-functional testing
» Test functionality (e.g., the » Performance testing
calculator) > Usability testing (HCI)
» No knowledge of the code > Security testing
» Examples of testing: > Internationalization,
boundary values localization
White-box testing Acceptance testing
» Have access to code » Customer tests to decide
» Goal: execute all code if accepts product
Oct 12, 2016 Sprenkle - CSCI209 25

Levels of Testing

Unit —

» Tests minimal software component, in isolation
» For us, Class-level testing
> Web: Web pages (Http Request)
Integration
» Tests interfaces & interaction of classes
System

» Tests that completely integrated system meets D
requirements

System Integration

» Test system works with other systems, e.g., third-
party systems

Oct 12, 2016 Sprenkle - CSCI209 26

UNIT TESTING

Oct 12, 2016 Sprenkle - CSCI209 27

Why Unit Test?

Verify code works as intended in isolation

Find defects early in development
Easier to test small pieces
Less cost than at later stages

Oct 12, 2016 Sprenkle - CSCI209 28

Why Unit Test?

Verify code works as intended in isolation

Find defects early in development
Easier to test small pieces
Less cost than at later stages
As application evolves, new code is more likely to
break existing code
Suite of (small) test cases to run after code changes
Also called regression testing

Oct 12, 2016 Sprenkle - CSCI209 29

Some Approaches to Testing Methods

Typical case

Test typical values of input/parameters
Boundary conditions

Test at boundaries of input/parameters

Many faults live “in corners”
Parameter validation

Verify that parameter and object bounds are
documented and checked

Example: pre-condition that parameter isn’t null

w All black-box testing approaches

Oct 12, 2016 Sprenkle - CSCI209 30

Another Use of Unit Testing:
Test-Driven Development

A development style, evolved from Extreme
Programming

Idea: write tests first without code bias

. How do you know you're “done” in
The Process: traditional development?

Write tests that code/new functionality should pass
Like a specification for the code (pre/post conditions)
All tests will initially fail
Write the code and verify that it passes test cases
P Know you’re done coding when you pass all tests

What assumption does this make?
Oct 12, 2016

Sprenkle - CSCI209 31

Software Testing Issues

How should you test? How often?
Code may change frequently
Code may depend on others’ code
A lot of code to validate

How do you know that an output is correct?
Complex output
Human judgment?

What caused a code failure?

w Need a systematic, automated,
repeatable approach

Sprenkle - CSCI209 32

Oct 12, 2016

Characteristics of Good Unit Testing

Automatic
Thorough
Repeatable
Independent

Why are these characteristics of
good (unit) testing?

Oct 12, 2016 Sprenkle - CSCI209 33

Characteristics of Good Unit Testing

Automatic

Since unit testing is done frequently, don’t want humans
slowing the process down

Automate executing test cases and evaluating results
Input: in test itself or from a file
Thorough
Covers all code/functionality/cases
Repeatable
Reproduce results (correct, failures)
Independent

Test cases are independent from each other
Easier to trace fault to code

Oct 12, 2016 Sprenkle - CSCI209 34

JUNIT

Oct 12, 2016 Sprenkle - CSCI209 35

JUnit Framework

A framework for unit testing Java programs
» Supported by Eclipse and other IDEs

» Developed by Erich Gamma and Kent Beck

Functionality

» Write tests
Validate output, automatically

» Automate execution of test suites

» Display pass/fail results of test execution
Stack trace where fails

» Organize tests, separate from code

o«| But, you still need to come up with the tests! 3

Aside: Framework

A framework is a basic conceptual structure
used to solve or address complex issues.

This very broad definition has allowed the term
to be used as a buzzword, especially in a
software context.

Oct 12, 2016 Sprenkle - CSCI209 37

Testing with JUnit tests
(CDTest
Typical organization: DVDTest
MedialtemTest

Set of testing classes
Testing classes packaged together in a tests
package
Separate package from code testing
A test class typically
Focuses on a specific class

Contains methods, each of which represents another
test of the class

Oct 12, 2016 Sprenkle - CSCI209 38

Structure of a JUnit Test

Set up the test case (optional)
Example: Creating objects

Exercise the code under test
Verify the correctness of the results
Teardown (optional)

Example: reclaim created objects

Oct 12, 2016 Sprenkle - CSCI209 39

Annotations

Testing in JUnit 4: uses annotations

Provide data about a program that is not part of
program itself

Have no direct effect on operation of the code

Example uses:

@Override: method declaration is intended to
override a method declaration in parent class

If method does not override parent class method,
compiler generates error message

Information for the compiler to suppress warnings
(@SupressWarnings)

Oct 12, 2016 Sprenkle - CSCI209 40

Tests are Methods

Mark your testing method with @Test
From org.junit.Test

public class CalculatorTest { Class for testing the
Calculator class

@Test
public void addTest() { A method to test the

“add” functionality
}

Convention: Method name describes what
you're testing

Oct 12, 2016 Sprenkle - CSCI209 41

Assert Methods

Variety of assert methods available
If fail, throw an exception
Otherwise, test keeps executing
All static void

Example:
assertEquals(Object expected, Object actyal)

@Test
public void addTest()

assertEquals(4, calculator.add(3, 1));

iiiiiiiiiiiiiiiii

Assert Methods

To use asserts, need static import:

import static org.junit.Assert.*;
static allows us to not have to use classname

More examples
assertTrue(boolean condition)
assertSame(Object expected, Object actual)
Refer to same object

assertEquals(double expected, double
actual, double delta)

Oct 12, 2016 Sprenkle - CSCI209 43

Example Uses of Assert Methods

@Test

public void testEmptyCollection() {
Collection collection = new ArrayList();
assertTrue(collection.isEmpty());

}

assertEquals(double expected, double actual, double delta)

@Test

public void testPI() {
final double ERROR_TOLERANCE = .01;
assertEquals(Math.PI, 3.14, ERROR_TOLERANCE);

¥
Will fail if ERROR_TOLERANCE = .001

Oct 12, 2016 Sprenkle - CSCI209 44

Set Up/Tear Down

May want methods to set up objects for every
test in the class

Called fixtures

If have multiple, no guarantees for order executed

@Before

public void prepareTestData() { ... }

@Before Executed before
public void setupMocks() { ... } each test method
@After

public void cleanupTestData() { ... }

Oct 12, 2016 Sprenkle - CSCI209 45

Example Set Up Method

private CD test(D;

@Before
public void setUp() {
test(D = new CDC"CD title", 100, 1997,
"CD Artist", 11);

@Before Executed before each test method
Can use test(CD in test methods

Oct 12, 2016 Sprenkle - CSCI209 46

Expecting an Exception

Handling Error Cases

Sometimes an exception is the expected result

Add an “expected” attribute:

@Test(expected=IndexOutOfBoundsException.class)

public void testIndexOutOfBoundsException() {
ArraylList emptylList = new ArraylList();
Object o = emptylList.get(0);

ks

Test case passes iff exception thrown

Oct 12, 2016 Sprenkle - CSCI209 47

Set Up/Tear Down For Class

May want methods to set up objects for set of
tests

Executed once before any test in class executes
@Before(Class

public static void
setupDatabaseConnection() { ... }

@AfterClass
public static void
teardownDatabaseConnection() { ... }

Oct 12, 2016 Sprenkle - CSCI209 48

JUNIT IN ECLIPSE

Oct 12, 2016 Sprenkle - CSCI209 49

Using JUnit in Eclipse

Eclipse can help make our job easier
» Automatically execute tests (i.e., methods)
» We can focus on coming up with tests

Oct 12, 2016 Sprenkle - CSCI209 50

Using JUnit in Eclipse

In Eclipse, go to your Medialtem project

Create a new JUnit Test Case (under Java)
Use JUnit 4
Add junit to build path
Put in package media.tests
Name: DVDTest
Choose to test DVD class
Select setUp and tearDown

Select methods to test

Run the class as a JUnit Test Case

Oct 12, 2016 Sprenkle - CSCI209 51

Example

Test method that gets the length of the DVD

Revise: Add code to setUp method that creates a
DVD

Notes
Replaying all the test cases: right click on package
FastView vs Detached
Hint: CTL-Spacebar to get auto-complete options

Oct 12, 2016 Sprenkle - CSCI209 52

Unit Testing & JUnit Summary

Unit Testing: testing smallest component of your
code
For us: class and its methods

JUnit provides framework to write test cases and
run test cases automatically

Easy to run again after code changes
JUnit Resources available from Course Page’s
“Resource” Link, under Java

API

Tutorials

Oct 12, 2016 Sprenkle - CSCI209 53

Project 1: Testing Practice

Given: a Car class that only has enough code to
compile
Your job: Create a good set of test cases that
thoroughly/effectively test Car class

Find faults in my faulty version of Car class

Start: look at code, think about how to test, set up
JUnit tests

Written analysis of process

Oct 12, 2016 Sprenkle - CSCI209 54

Project 1: Testing Practice

15t Email me and your teammate with the name
of your team

| will create a repository that the pair can work on
together

Oct 12, 2016 Sprenkle - CSCI209 55

Looking Ahead

More Testing!
Extra credit assignment

Oct 12, 2016 Sprenkle - CSCI209 56

