
11/8/16

1

Objec&ves	
• Tes&ng	

Oct	12,	2016	 Sprenkle	-	CSCI209	 1	

No	Silver	Bullet:	Essence	and	Accidents	of	
SoHware	Engineering		
“Of	all	the	monsters	that	fill	the	nightmares	of	our	folklore,	none	terrify	
more	than	werewolves,	because	they	transform	unexpectedly	from	the	
familiar	into	horrors.	For	these,	one	seeks	bullets	of	silver	that	can	
magically	lay	them	to	rest.		
	
“The	familiar	soHware	project,	at	least	as	seen	by	the	nontechnical	
manager,	has	something	of	this	character;	it	is	usually	innocent	and	
straighSorward,	but	is	capable	of	becoming	a	monster	of	missed	
schedules,	blown	budgets,	and	flawed	products.	So	we	hear	desperate	
cries	for	a	silver	bullet--something	to	make	soHware	costs	drop	as	rapidly	
as	computer	hardware	costs	do.		
	
“But,	as	we	look	to	the	horizon	of	a	decade	hence,	we	see	no	silver	bullet.	
There	is	no	single	development,	in	either	technology	or	in	management	
technique,	that	by	itself	promises	even	one	order-of-magnitude	
improvement	in	produc&vity,	in	reliability,	in	simplicity.	In	this	ar&cle,	I	
shall	try	to	show	why,	by	examining	both	the	nature	of	the	soHware	
problem	and	the	proper&es	of	the	bullets	proposed.”	
	 Oct	10,	2016	 Sprenkle	-	CSCI209	 2	

by Frederick P. Brooks, Jr., 1986

11/8/16

2

Who	is	Fred	Brooks?	
• UNC	Professor	
• Turing	Award	winner	
• “The	most	important	single	decision	I	ever	made	
was	to	change	the	IBM	360	series	from	a	6-bit	
byte	to	an	8-bit	byte,	thereby	enabling	the	use	of	
lowercase	le_ers.	That	change	propagated	
everywhere.”	

Oct	10,	2016	 Sprenkle	-	CSCI209	 3	

Tradi&onal	SoHware	Engineering	
Process:	Waterfall	Model	

Oct	10,	2016	 Sprenkle	-	CSCI209	 4	

Requirements	

Design	

Implementa&on	

Integra&on	

Acceptance	

Release/	
Maintenance	

Validate at each step
Goal: A stage is 100%
complete before moving to
next step

11/8/16

3

Feedback	in	Waterfall	Model	

Oct	10,	2016	 Sprenkle	-	CSCI209	 5	

• Problems may be revealed
in later stages

• What happens if problems
aren’t revealed until
Acceptance?

Requirements	

Design	

Implementa&on	

Integra&on	

Acceptance	

Release/	
Maintenance	

Itera&ve	Design	

Oct	10,	2016	 Sprenkle	-	CSCI209	 6	

Design

Evaluate Implement

Get feedback
from users/
clients

11/8/16

4

Spiral	Model	
•  Idea:	smaller	prototypes	
to	test/fix/throw	away	
Ø  Finding	problems	early	

costs	less	
•  In	general…	

Ø  Break	func&onality	into	
smaller	pieces	

Ø  Implement	most	
depended-on	or	highest-
priority	features	first		

Oct	10,	2016	 Sprenkle	-	CSCI209	 7	

Design

ImplementEvaluate

Prototypes

Radial dimension: cost[Boehm 86]

Prototypes	
• Purpose/Dimensions	

Ø Func&onality	
Ø  Interac&on	
Ø  Implementa&on	

• Fidelity:		
Ø Low:	omits	details	
Ø High:	closer	to	finished	project	
Ø Mul&-dimensional	

•  Breadth:	%	of	features	covered	
Ø Only	enough	features	for	certain	tasks	

• Depth:	degree	of	func&onality	
Ø Limited	choices,	canned	responses,	no	error	handling	

Oct	10,	2016	 Sprenkle	-	CSCI209	 8	

From Nielsen, �
Usability Engineering

11/8/16

5

Low	Fidelity	
Prototypes	
• Media:	Paper	
• Examples:	storyboard,	
sketches,	flipbook,	
flow	diagram	

Oct	10,	2016	 Sprenkle	-	CSCI209	 9	

High	Fidelity	Prototypes	
• Media:	Flash,	HTML	(non-interac&ve),	
PowerPoint,	Video	

• Examples:	Mockups,	Wizard	of	Oz		

Oct	10,	2016	 Sprenkle	-	CSCI209	 10	

Virtual Peer for
Autistic Children

http://www.articulab.justinecassell.com/projects/samautism/index.html

11/8/16

6

How	to	Implement	an	Effec&ve	Solu&on	
• Understand	the	problem	(interact	with	people)	
• Understand	external	constraints	(interact	with	
people)	

• Design	an	effec&ve	solu&on	to	the	problem	
• While	designing	the	solu&on,	design	some	tests	
to	verify	that	the	problem	is	solved	(and	remains	
solved)	

• Code	the	effec&ve	solu&on	to	the	problem	
• Teach	other	team	members	about	your	solu&on	
to	the	problem	(interact	with	people)	

Oct	10,	2016	 Sprenkle	-	CSCI209	 11	

Spiral	Model	Steps	
• Design	a	{method,	class,	package}	
•  Implement	the	{method,	class,	package}	
• Test	the	{method,	class,	package}	
• Fix	the	{method,	class,	package}	
• Deploy	the	{method,	class,	package}	
• Get	feedback	

Ø Probably	will	require	modifica&ons	to	design	
Ø May	even	need	to	rollback	a	previous	version	

• Repeat	
Oct	10,	2016	 Sprenkle	-	CSCI209	 12	

11/8/16

7

Agile	Development	Framework:	Scrum	
• The	Scrum	framework	in	30	seconds	

Ø Product	owner	creates	priori&zed	wish	list,	a	product	
backlog	

Ø Team	works	in	a	sprint,	usually	2-4	weeks	
• During	planning,	team	picks	a	subset	of	wish	list,	a	sprint	
backlog,	and	decides	how	to	implement	those	pieces	

• Daily	Scrum:	team	meets	daily	to	assess	its	progress	
Ø ScrumMaster	keeps	the	team	focused	on	its	goal	

•  At	end	of	sprint,	work	should	be	poten&ally	shippable:		
Ø ready	to	hand	to	a	customer,	put	on	a	store	shelf,	or	show	to	
a	stakeholder	

•  The	sprint	ends	with	a	sprint	review	and	retrospec&ve	
Ø Repeat	sprint	

Oct	10,	2016	 Sprenkle	-	CSCI209	 13	

https://www.scrumalliance.org/why-scrum

SOFTWARE	TESTING	PROCESS	

Oct	12,	2016	 Sprenkle	-	CSCI209	 14	

11/8/16

8

A	Bad	Role	Model	

Oct	12,	2016	 Sprenkle	-	CSCI209	 15	http://imgur.com/HBSbn

MicrosoH																														Tes&ng	
• Beyond	their	internal	tes&ng	…	

Ø 5	million	people	beta	tested		
Ø 60+	years	of	performance	tes&ng	
Ø 1	Billion+	Office	2007	sessions	

• S&ll,	users	found	correctness,	stability,	
robustness,	and	security	bugs	

Oct	12,	2016	 Sprenkle	-	CSCI209	 16	

11/8/16

9

Type	1	Bugs:	Compile-Time	

• Syntax	errors	
Ø Missing	semicolon,	parentheses		

• Compiler	no&fies	of	error	
• Cheap,	easy	to	fix	

Oct	12,	2016	 Sprenkle	-	CSCI209	 17	

Type	2	Bugs:	Run-Time	

• Usually	logic	errors	
• Expensive	to	locate,	fix	

Oct	12,	2016	 Sprenkle	-	CSCI209	 18	

11/8/16

10

Aside:	Objec&ons	to	“Bug”	Terminology	
• “Bug”	

Ø Sounds	like	it’s	just	an	
annoyance	
• Can	simply	swat	away	

Ø Minimizes	poten&al	problems	
Ø Hides	programmer’s	
responsibility	

• Alterna&ve	terms	
Ø Defect	
Ø Fault	

Oct	12,	2016	 Sprenkle	-	CSCI209	 19	

SoHware	Tes&ng	Process	

• Test	Suite:	set	of	test	cases	

Oct	12,	2016	 Sprenkle	-	CSCI209	 20	

Input Program	 Output

Test Case

Program
Under Test

Expected	
Output	 ?

pass or fail

11/8/16

11

SoHware	Tes&ng	Process	

• Tester	plays	devil’s	advocate	
Ø Hopes	to	reveal	problems	in	the	program	using	
“good”	test	cases		

Ø Be_er	tester	finds	than	a	customer!	

Oct	12,	2016	 Sprenkle	-	CSCI209	 21	

Input Program	 Output

How is testing different from debugging?

How	Would	You	Test	a	Calculator	
Program?	

• What	test	cases:	input	and	expected	output?	

Oct	12,	2016	 Sprenkle	-	CSCI209	 22	

Numerical
Answer

adds, subtracts,
multiplies, divides

Operands,
operators,
expected

output

Input Calculator	
Program	 Output

11/8/16

12

Example	Test	Cases	for	Calculator	Program	

•  Basic	Func&onality	
Ø Addi&on	
Ø  Subtrac&on	
Ø Mul&plica&on	
Ø Division	
Ø Order	of	opera&ons	

•  Invalid	Input	
Ø  Le_ers,	not-opera&on	

characters	(&,$,	…)	

•  “Tricky”	Cases	
Ø Divide	by	0	
Ø Nega&ve	Numbers	
Ø  Long	sequences	of	

operands,	operators	
Ø  VERY	large,	VERY	small	

numbers	

Oct	12,	2016	 Sprenkle	-	CSCI209	 23	

Types	of	Tes&ng	
(Non-Exhaus&ve)		
•  Black-box	tes&ng	

• White-box	tes&ng	

•  Non-func&onal	tes&ng	

•  Acceptance	tes&ng	

Oct	12,	2016	 Sprenkle	-	CSCI209	 24	

Ideas or definitions of any of these?

11/8/16

13

Types	of	Tes&ng	
(Non-Exhaus&ve)		
•  Black-box	tes&ng	

Ø  Test	func2onality	(e.g.,	the	
calculator)	

Ø No	knowledge	of	the	code	
Ø  Examples	of	tes&ng:	

boundary	values	

• White-box	tes&ng	
Ø Have	access	to	code	
Ø Goal:	execute	all	code	

•  Non-func&onal	tes&ng	
Ø  Performance	tes&ng	
Ø Usability	tes&ng	(HCI)	
Ø  Security	tes&ng	
Ø  Interna&onaliza&on,	

localiza&on	

•  Acceptance	tes&ng	
Ø  Customer	tests	to	decide	

if	accepts	product	

Oct	12,	2016	 Sprenkle	-	CSCI209	 25	

Levels	of	Tes&ng	
• Unit	

Ø Tests	minimal	soHware	component,	in	isola&on	
Ø For	us,	Class-level	tes&ng	
Ø Web:	Web	pages	(H_p	Request)	

•  Integra&on	
Ø Tests	interfaces	&	interac&on	of	classes	

• System	
Ø Tests	that	completely	integrated	system	meets	
requirements	

• System	Integra&on	
Ø Test	system	works	with	other	systems,	e.g.,	third-
party	systems	

Oct	12,	2016	 Sprenkle	-	CSCI209	 26	

C
ost increases

11/8/16

14

UNIT	TESTING	

Oct	12,	2016	 Sprenkle	-	CSCI209	 27	

Why	Unit	Test?	
• Verify	code	works	as	intended	in	isola&on	
• Find	defects	early	in	development	

Ø Easier	to	test	small	pieces	
Ø Less	cost	than	at	later	stages	

Oct	12,	2016	 Sprenkle	-	CSCI209	 28	

11/8/16

15

Why	Unit	Test?	
• Verify	code	works	as	intended	in	isola&on	
• Find	defects	early	in	development	

Ø Easier	to	test	small	pieces	
Ø Less	cost	than	at	later	stages	

• As	applica&on	evolves,	new	code	is	more	likely	to	
break	exis&ng	code	
Ø Suite	of	(small)	test	cases	to	run	aHer	code	changes	
Ø Also	called	regression	tes&ng	

Oct	12,	2016	 Sprenkle	-	CSCI209	 29	

Some	Approaches	to	Tes&ng	Methods	
• Typical	case	

Ø Test	typical	values	of	input/parameters	
• Boundary	condi&ons	

Ø Test	at	boundaries	of	input/parameters	
Ø Many	faults	live	“in	corners”	

• Parameter	valida&on	
Ø Verify	that	parameter	and	object	bounds	are	
documented	and	checked	

Ø Example:	pre-condi&on	that	parameter	isn’t	null	

Oct	12,	2016	 Sprenkle	-	CSCI209	 30	

➥  All black-box testing approaches

11/8/16

16

Another	Use	of	Unit	Tes&ng:	
	 	 	Test-Driven	Development	

• A	development	style,	evolved	from	Extreme	
Programming	

•  Idea:	write	tests	first	without	code	bias	
• The	Process:	

1.  Write	tests	that	code/new	func&onality	should	pass	
• Like	a	specifica&on	for	the	code	(pre/post	condi&ons)	
• All	tests	will	ini&ally	fail	

2.  Write	the	code	and	verify	that	it	passes	test	cases	
• Know	you’re	done	coding	when	you	pass	all	tests	

Oct	12,	2016	 Sprenkle	-	CSCI209	 31	

What assumption does this make?

How do you know you’re “done” in
traditional development?

SoHware	Tes&ng	Issues	
• How	should	you	test?		How	oHen?	

Ø Code	may	change	frequently	
Ø Code	may	depend	on	others’	code	
Ø A	lot	of	code	to	validate	

• How	do	you	know	that	an	output	is	correct?	
Ø Complex	output	
Ø Human	judgment?			

• What	caused	a	code	failure?	

Oct	12,	2016	 Sprenkle	-	CSCI209	 32	

➥  Need a systematic, automated,
repeatable approach

11/8/16

17

Characteris&cs	of	Good	Unit	Tes&ng	

• AutomaEc	
• Thorough	
• Repeatable	
• Independent	

Oct	12,	2016	 Sprenkle	-	CSCI209	 33	

Why are these characteristics of
good (unit) testing?

Characteris&cs	of	Good	Unit	Tes&ng	
• AutomaEc	

Ø Since	unit	tes&ng	is	done	frequently,	don’t	want	humans	
slowing	the	process	down	

Ø Automate	execu&ng	test	cases	and	evalua&ng	results	
Ø  Input:	in	test	itself	or	from	a	file	

• Thorough	
Ø Covers	all	code/func&onality/cases	

• Repeatable	
Ø Reproduce	results	(correct,	failures)	

•  Independent	
Ø Test	cases	are	independent	from	each	other	
Ø Easier	to	trace	fault	to	code	

Oct	12,	2016	 Sprenkle	-	CSCI209	 34	

11/8/16

18

JUNIT	

Oct	12,	2016	 Sprenkle	-	CSCI209	 35	

JUnit	Framework	
• A	framework	for	unit	tes&ng	Java	programs	

Ø Supported	by	Eclipse	and	other	IDEs	
Ø Developed	by	Erich	Gamma	and	Kent	Beck	

• Func&onality	
Ø Write	tests	

•  Validate	output,	automa&cally	
Ø Automate	execu&on	of	test	suites	
Ø Display	pass/fail	results	of	test	execu&on	

•  Stack	trace	where	fails	
Ø Organize	tests,	separate	from	code	

Oct	12,	2016	 Sprenkle	-	CSCI209	 36	

Kent Beck

Erich Gamma

But,	you	sEll	need	to	come	up	with	the	tests!	

11/8/16

19

Aside:	Framework	

Oct	12,	2016	 Sprenkle	-	CSCI209	 37	

A framework is a basic conceptual structure
used to solve or address complex issues.

This very broad definition has allowed the term
to be used as a buzzword, especially in a
software context.

Tes&ng	with	JUnit	
• Typical	organiza&on:	

Ø Set	of	tes&ng	classes	
Ø Tes&ng	classes	packaged	together	in	a	tests
package	
• Separate	package	from	code	tes&ng	

• A	test	class	typically		
Ø Focuses	on	a	specific	class	
Ø Contains	methods,	each	of	which	represents	another	
test	of	the	class	

Oct	12,	2016	 Sprenkle	-	CSCI209	 38	

tests
CDTest
DVDTest
MediaItemTest

11/8/16

20

Structure	of	a	JUnit	Test	
1.  Set	up	the	test	case	(op&onal)	

Ø  Example:	Crea&ng	objects	

2.  Exercise	the	code	under	test	
3.  Verify	the	correctness	of	the	results	
4.  Teardown	(op&onal)	

Ø Example:	reclaim	created	objects	

Oct	12,	2016	 Sprenkle	-	CSCI209	 39	

Annota&ons	
• Tes&ng	in	JUnit	4:	uses	annotaEons		
• Provide	data	about	a	program	that	is	not	part	of	
program	itself		

• Have	no	direct	effect	on	opera&on	of	the	code		
• Example	uses:		

Ø @Override:	method	declara&on	is	intended	to	
override	a	method	declara&on	in	parent	class	
•  If	method	does	not	override	parent	class	method,	
compiler	generates	error	message	

Ø Informa&on	for	the	compiler	to	suppress	warnings	
(@SupressWarnings)	

	Oct	12,	2016	 Sprenkle	-	CSCI209	 40	

11/8/16

21

Tests	are	Methods	
• Mark	your	tes&ng	method	with	@Test

Ø From org.junit.Test

• Conven&on:	Method	name	describes	what	
you’re	tes&ng	

Oct	12,	2016	 Sprenkle	-	CSCI209	 41	

public class CalculatorTest {

@Test
public void addTest() {

…
}

} 	

A method to test the
“add” functionality

Class for testing the
Calculator class

Assert	Methods	
• Variety	of	assert	methods	available	
•  If	fail,	throw	an	excep&on	
• Otherwise,	test	keeps	execu&ng	
• All	static void	
• Example:	
 assertEquals(Object expected, Object actual)	
	

Oct	12,	2016	 Sprenkle	-	CSCI209	 42	

@Test
public void addTest() {

…
assertEquals(4, calculator.add(3, 1));

} 	

11/8/16

22

Assert	Methods	
• To	use	asserts,	need	sta2c	import:	

Ø static allows	us	to	not	have	to	use	classname

• More	examples	
Ø assertTrue(boolean condition)
Ø assertSame(Object expected, Object actual)

•  Refer to same object
Ø assertEquals(double expected, double
actual, double delta)

Oct	12,	2016	 Sprenkle	-	CSCI209	 43	

import static org.junit.Assert.*;

Example	Uses	of	Assert	Methods	

Oct	12,	2016	 Sprenkle	-	CSCI209	 44	

@Test
public void testEmptyCollection() {

Collection collection = new ArrayList();
 assertTrue(collection.isEmpty());
}

@Test
public void testPI() {

final double ERROR_TOLERANCE = .01;
assertEquals(Math.PI, 3.14, ERROR_TOLERANCE);

}

Will fail if ERROR_TOLERANCE = .001

assertEquals(double expected, double actual, double delta)

11/8/16

23

Set	Up/Tear	Down	
• May	want	methods	to	set	up	objects	for	every	
test	in	the	class	
Ø Called	fixtures	
Ø If	have	mul&ple,	no	guarantees	for	order	executed	

Oct	12,	2016	 Sprenkle	-	CSCI209	 45	

@Before
public void prepareTestData() { ... }

@Before
public void setupMocks() { ... }

@After
public void cleanupTestData() { ... }	

Executed before
each test method

Example	Set	Up	Method	

Oct	12,	2016	 Sprenkle	-	CSCI209	 46	

@Before Executed before each test method
Can use testCD in test methods

private CD testCD;

@Before
public void setUp() {

testCD = new CD("CD title", 100, 1997,
"CD Artist", 11);

}

11/8/16

24

Expec&ng	an	Excep&on	
• Handling	Error	Cases	

Ø Some&mes	an	excep&on	is	the	expected	result	

Oct	12,	2016	 Sprenkle	-	CSCI209	 47	

@Test(expected=IndexOutOfBoundsException.class)
public void testIndexOutOfBoundsException() {
 ArrayList emptyList = new ArrayList();
 Object o = emptyList.get(0);
}

Add an “expected” attribute:

Test case passes iff exception thrown

Set	Up/Tear	Down	For	Class	
• May	want	methods	to	set	up	objects	for	set	of	
tests	
Ø Executed	once	before	any	test	in	class	executes	

Oct	12,	2016	 Sprenkle	-	CSCI209	 48	

@BeforeClass
public static void
setupDatabaseConnection() { ... }

@AfterClass
public static void
teardownDatabaseConnection() { ... }	

11/8/16

25

JUNIT	IN	ECLIPSE	

Oct	12,	2016	 Sprenkle	-	CSCI209	 49	

Using	JUnit	in	Eclipse	
• Eclipse	can	help	make	our	job	easier	

Ø Automa&cally	execute	tests	(i.e.,	methods)	
Ø We	can	focus	on	coming	up	with	tests	

Oct	12,	2016	 Sprenkle	-	CSCI209	 50	

11/8/16

26

Using	JUnit	in	Eclipse	
•  In	Eclipse,	go	to	your	MediaItem project	
• Create	a	new	JUnit	Test	Case	(under	Java)	

Ø Use	JUnit	4	
• Add	junit	to	build	path	

Ø Put	in	package	media.tests
Ø Name:	DVDTest
Ø Choose	to	test	DVD class

•  Select setUp and tearDown
• Select	methods	to	test	

• Run	the	class	as	a	JUnit	Test	Case	
Oct	12,	2016	 Sprenkle	-	CSCI209	 51	

Example	
• Test	method	that	gets	the	length	of	the	DVD

Ø Revise:	Add	code	to	setUp method	that	creates	a	
DVD	

• Notes	
Ø Replaying	all	the	test	cases:	right	click	on	package	
Ø FastView	vs	Detached	
Ø Hint:	CTL-Spacebar	to	get	auto-complete	op&ons	

Oct	12,	2016	 Sprenkle	-	CSCI209	 52	

11/8/16

27

Unit	Tes&ng	&	JUnit	Summary	
• Unit	Tes&ng:	tes&ng	smallest	component	of	your	
code	
Ø For	us:	class	and	its	methods	

• JUnit	provides	framework	to	write	test	cases	and	
run	test	cases	automa&cally	
Ø Easy	to	run	again	aHer	code	changes	

• JUnit	Resources	available	from	Course	Page’s	
“Resource”	Link,	under	Java	
Ø API	
Ø Tutorials	

Oct	12,	2016	 Sprenkle	-	CSCI209	 53	

Project	1:	Tes&ng	Prac&ce	
• Given:	a	Car class	that	only	has	enough	code	to	
compile	

• Your	job:	Create	a	good	set	of	test	cases	that	
thoroughly/effec2vely	test	Car class	
Ø Find	faults	in	my	faulty	version	of	Car class	
Ø Start:	look	at	code,	think	about	how	to	test,	set	up	
JUnit	tests	

Ø Wri_en	analysis	of	process	

Oct	12,	2016	 Sprenkle	-	CSCI209	 54	

11/8/16

28

Project	1:	Tes&ng	Prac&ce	
• 1st:	Email	me	and	your	teammate	with	the	name	
of	your	team	
Ø I	will	create	a		repository	that	the	pair	can	work	on	
together	

Oct	12,	2016	 Sprenkle	-	CSCI209	 55	

Looking	Ahead	
• More	Tes&ng!	
• Extra	credit	assignment	

Oct	12,	2016	 Sprenkle	-	CSCI209	 56	

