
10/18/16

1

Objec&ves	
• JUnit	
• Coverage	
• Collabora&on	

Oct	17,	2016	 Sprenkle	-	CSCI209	 1	

Review	
• Describe	the	general	tes&ng	process	
• What	is	a	set	of	test	cases	called?	
• What	is	unit	tes(ng?	
• What	are	the	benefits	of	unit	tes&ng?	
• What	are	the	characteris&cs	of	good	unit	tests?	
• What	are	the	steps	in	a	JUnit	Test	Case?	

Ø How	do	we	implement	those	steps?	

• What	is	test-driven	development?	

Oct	17,	2016	 Sprenkle	-	CSCI209	 2	

10/18/16

2

JUnit	Review	
• Put	JUnit	classes	in	a	separate	tests	package	

• Tes&ng	process:	
1.  Set	up	–	objects	for	tes&ng	
2.  Execute	code	
3.  Verify	output	
4.  Tear	down	

Oct	17,	2016	 Sprenkle	-	CSCI209	 3	

Tests	are	Methods	
• Mark	your	tes&ng	method	with	@Test

Ø From org.junit.Test

• Conven&on:	Method	name	describes	what	
you’re	tes&ng	

Oct	17,	2016	 Sprenkle	-	CSCI209	 4	

public class CalculatorTest {

@Test
public void addTest() {

…
}

} 	

A method to test the
“add” functionality

Class for testing the
Calculator class

10/18/16

3

Assert	Methods	
• Variety	of	assert	methods	available	
•  If	fail,	throw	an	excep&on	
• Otherwise,	test	keeps	execu&ng	
• All	static void	
• Example:	
 assertEquals(Object expected, Object actual)	
	

Oct	17,	2016	 Sprenkle	-	CSCI209	 5	

@Test
public void addTest() {

…
assertEquals(4, calculator.add(3, 1));

} 	

Set	Up/Tear	Down	
• May	want	methods	to	set	up	objects	for	every	
test	in	the	class	
Ø Called	fixtures	
Ø If	have	mul&ple,	no	guarantees	for	order	executed	

Oct	17,	2016	 Sprenkle	-	CSCI209	 6	

@Before
public void prepareTestData() { ... }

@Before
public void setupMocks() { ... }

@After
public void cleanupTestData() { ... }	

Executed before
each test method

10/18/16

4

Example	Set	Up	Method	

Oct	17,	2016	 Sprenkle	-	CSCI209	 7	

@Before Executed before each test method
Can use testCD in test methods

private CD testCD;

@Before
public void setUp() {

testCD = new CD("CD title", 100, 1997,
"CD Artist", 11);

}

Expec&ng	an	Excep&on	
• Handling	Error	Cases	

Ø Some&mes	an	excep&on	is	the	expected	result	

Oct	17,	2016	 Sprenkle	-	CSCI209	 8	

@Test(expected=IndexOutOfBoundsException.class)
public void testIndexOutOfBoundsException() {
 ArrayList emptyList = new ArrayList();
 Object o = emptyList.get(0);
}

Add an “expected” attribute:

Test case passes iff exception thrown

10/18/16

5

JUNIT	IN	ECLIPSE	

Oct	17,	2016	 Sprenkle	-	CSCI209	 9	

Using	JUnit	in	Eclipse	
• Eclipse	can	help	make	our	job	easier	

Ø Automa&cally	execute	tests	(i.e.,	methods)	
Ø We	can	focus	on	coming	up	with	tests	

Oct	17,	2016	 Sprenkle	-	CSCI209	 10	

10/18/16

6

Unit	Tes&ng	&	JUnit	Summary	
• Unit	Tes&ng:	tes&ng	smallest	component	of	your	
code	
Ø For	us:	class	and	its	methods	

• JUnit	provides	framework	to	write	test	cases	and	
run	test	cases	automa&cally	
Ø Easy	to	run	again	acer	code	changes	

• JUnit	Resources	available	from	Course	Page’s	
“Resource”	Link,	under	Java	
Ø API	
Ø Tutorials	

Oct	17,	2016	 Sprenkle	-	CSCI209	 11	

VERSION	CONTROL	

Oct	17,	2016	 Sprenkle	-	CSCI209	 12	

10/18/16

7

Problems	in	Collabora&ng	on	Code	

Oct	17,	2016	 Sprenkle	-	CSCI209	 13	

Design

Evaluate Implement

Creating many
prototypes

- What if don’t like
recent prototype?

Need to go back to
older version

•  Different parts (e.g., user
interface and backend)

•  > 1 developer implementing
concurrently

- What if one introduces a
bug?

Developers

Version	Control	Features	
•  Synchroniza&on	

Ø  Lets	people	share	files	
Ø  Stay	up-to-date	with	the	latest	version	

•  Backup	and	Restore	
Ø  Files	are	saved	as	they	are	edited	
Ø  Revert	to	a	specific	version/checkpoint	

•  Track	changes	to	code	
Ø  Save	comments	explaining	why	change	happened	
Ø  Stored	in	the	VCS,	not	the	file	
Ø  Track	how,	why	a	file	evolves	over	&me	

•  Track	ownership	
Ø  Tags	every	change	with	the	name	of	the	person	who	made	it	

Oct	17,	2016	 Sprenkle	-	CSCI209	 14	

10/18/16

8

Version	Control	Features	
• Short-term	undo	

Ø Messed	up	a	file?		Go	back	to	the	last	good	version	
•  Long-term	undo	

Ø Created	a	bug	a	year	ago?		Jump	back	to	see	change	you	
made.	

• Sandboxing	
Ø Making	a	big	change?		Make	temporary	changes	in	
isolated	area,	test,	work	out	kinks	before	“checking	in”	
your	changes	

• Branching	and	merging	
Ø Branch	a	copy	of	your	code	into	a	separate	area,	modify	
it	in	isola&on	(tracking	changes	separately)	

Ø Later,	merge	work	into	common	area	

Oct	17,	2016	 Sprenkle	-	CSCI209	 15	

Version	Control	Systems	
• Popular	Version	Control	Systems	

Ø CVS,	Subversion,	Git,	…	
• Terms	used	are	common	for	most	version	control	
systems	

• We	will	use	Subversion	with	Subclipse	
Ø Mark	Phippard,	a	W&L	grad	works	on	both	

• Chief	Architect	at	CollabNet,	the	company	that	
founded	Subversion	

• Subclipse	lead	
Oct	17,	2016	 Sprenkle	-	CSCI209	 16	

10/18/16

9

Using	Version	Control	

Oct	17,	2016	 Sprenkle	-	CSCI209	 17	

Repository

•  Keeps	public	copy	of	code:	
versions	of	all	files,		
comments	about	changes,		
who	made	changes	

• Have	own	copy	of	codeà	
“Working	Copy”	

• Checkout,	commit,	update	
code	

Users

Code

Code

Using	Version	Control:	checkout
• To	start,	need	to	checkout your	working	copy	
of	the	code	

Oct	17,	2016	 Sprenkle	-	CSCI209	 18	

Repository

checkout
Code

Code
Current version�

 of all files

10/18/16

10

Using	Version	Control:	commit
• Acer	you	make	changes	that	you	want	others	to	
see,	commit your	version	
Ø Include	comments	about	what	changes	you	made	
and	why	

Oct	17,	2016	 Sprenkle	-	CSCI209	 19	

Repository

•  Checks	for	conflicts	
•  Updates	each	modified	file	
•  Records	comments	with	
updated	files	

commit

Code* comments?
comments

Code

Using	Version	Control:	commit
• Acer	you	make	changes	that	you	want	others	to	
see,	commit your	version	
Ø Include	comments	about	what	changes	you	made	
and	why	

Oct	17,	2016	 Sprenkle	-	CSCI209	 20	

Repository

•  Checks	for	conflicts	
•  Updates	each	modified	file	
•  Records	comments	with	
updated	files	

commit

Code* comments?
comments

Code

Code’

Other	people’s	code	
doesn’t	change	

10/18/16

11

Using	Version	Control:	commit
• Acer	you	make	changes	that	you	want	others	to	
see,	commit your	version	

Oct	17,	2016	 Sprenkle	-	CSCI209	 21	

Repository

•  Checks	for	conflicts:	
code	conflicts	with	recent	
changes	in	the	public	copy	

commit
Code*

conflicts
Code*

•  Update	code,		
fix	conflicts	

•  Try	commit	again	

Using	Version	Control:	update
• To	see	the	current	version	of	the	code,	update
your	repository	
Ø Resolve	conflicts	

Oct	17,	2016	 Sprenkle	-	CSCI209	 22	

Repository
update

Code
code

10/18/16

12

Using	Version	Control:	add, delete

• You	need	to	add and	delete	files	and	
directories	to	the	repository,	then	commit

Oct	17,	2016	 Sprenkle	-	CSCI209	 23	

Repository
commit

Code

•  Add,	delete	files	
and	directories	

•  Commit	

•  Create	new	records	for	added	files	
•  Close	records	for	deleted	files	

• 	Files	not	deleted	from	repository	

Version	Control	Advice	
• Does	not	eliminate	need	for	communica&on	

Ø Process	becomes	much	more	difficult	if	developers	
do	not	communicate	

• Before	picking	up	again,	update	your	working	
copy	

• Commit	only	acer	you’ve	tested	code	and	you’re	
fairly	sure	it	works	
Ø Write	descrip&ve	comments	so	your	team	members	
know	what	you	did	and	why	

Oct	17,	2016	 Sprenkle	-	CSCI209	 24	

10/18/16

13

Code	Organiza&on	

• Organize	code	into	appropriate	structure	

Oct	17,	2016	 Sprenkle	-	CSCI209	 25	

MyProject

branches tags trunk

dir file

Main line of
development

Named snapshots �
of code

Active variations �
of the trunk

SUBCLIPSE	

Oct	17,	2016	 Sprenkle	-	CSCI209	 26	

10/18/16

14

Subclipse	
	
• Plugin	for	Eclipse	
•  Installa&on	instruc&ons	online	

Ø Includes	Configura&on	instruc&ons	too	

Oct	17,	2016	 Sprenkle	-	CSCI209	 27	

Subversion Practice due by end of day today

SVN	Rules	
• Communicate	with	your	teammates	
• Describe	your	commiped	changes	in	comments	

Ø Let’s	your	teammates	know	what	you’re	doing—
what	changes	to	look	for	

• Don’t	commit	the	bin	directory/class	files	
• Don’t	commit	files	that	are	specific	to	your	
account	
Ø .classpath,	.project,	.serngs	

Oct	17,	2016	 Sprenkle	-	CSCI209	 28	

10/18/16

15

Project	1:	Tes&ng	Prac&ce	
• Given:	a	Car class	that	only	has	enough	code	to	
compile	

• Your	job:	Create	a	good	set	of	test	cases	that	
thoroughly/effec.vely	test	Car class	
Ø Find	faults	in	my	faulty	version	of	Car class	
Ø Start:	look	at	code,	think	about	how	to	test,	set	up	
JUnit	tests	

Ø Wripen	analysis	of	process	

• Due	next	Wednesday	
Ø Wed,	Fri	–	work	on	the	project	

Oct	17,	2016	 Sprenkle	-	CSCI209	 29	

