Objectives

JUnit
Coverage
Collaboration

Oct 17, 2016 Sprenkle - CSCI209

Review

Describe the general testing process

What is a set of test cases called?

What is unit testing?

What are the benefits of unit testing?

What are the characteristics of good unit tests?

What are the steps in a JUnit Test Case?
How do we implement those steps?

What is test-driven development?

Oct 17, 2016 Sprenkle - CSCI209

JUnit Review

Put JUnit classes in a separate tests package

Testing process:
Set up — objects for testing
Execute code
Verify output
Tear down

Oct 17, 2016 Sprenkle - CSCI209 3

Tests are Methods

Mark your testing method with @Test
From org.junit.Test

public class CalculatorTest { Class for testing the
Calculator class

@Test
public void addTest() { A method to test the
! . “add” functionality

Convention: Method name describes what
you're testing

Oct 17, 2016 Sprenkle - CSCI209 4

Assert Methods

Variety of assert methods available
If fail, throw an exception
Otherwise, test keeps executing
All static void

Example:
assertEquals(Object expected, Object actyal)

@Test
public void addTest()

assertEquals(4, calculator.add(3, 1));

.................

Set Up/Tear Down

May want methods to set up objects for every
test in the class

Called fixtures

If have multiple, no guarantees for order executed

@Before

public void prepareTestData() { ... }

@Before Executed before
public void setupMocks() { ... } each test method
@After

public void cleanupTestData() { ... }

Oct 17, 2016 Sprenkle - CSCI209 6

Example Set Up Method

private CD test(D;

@Before
public void setUp() {
test(D = new CDC"CD title", 100, 1997,
"CD Artist", 11);

@Before Executed before each test method
Can use test(CD in test methods

Oct 17, 2016 Sprenkle - CSCI209

Expecting an Exception

Handling Error Cases

Sometimes an exception is the expected result

Add an “expected” attribute:

@Test(expected=IndexOutOfBoundsException.class)

public void testIndexOutOfBoundsException() {
ArraylList emptylList = new ArraylList();
Object o = emptylList.get(0);

ks

Test case passes iff exception thrown

Oct 17, 2016 Sprenkle - CSCI209

JUNIT IN ECLIPSE

Oct 17, 2016 Sprenkle - CSCI209 9

Using JUnit in Eclipse

Eclipse can help make our job easier
» Automatically execute tests (i.e., methods)
» We can focus on coming up with tests

Oct 17, 2016 Sprenkle - CSCI209 10

Unit Testing & JUnit Summary

Unit Testing: testing smallest component of your
code

For us: class and its methods
JUnit provides framework to write test cases and
run test cases automatically

Easy to run again after code changes
JUnit Resources available from Course Page’s
“Resource” Link, under Java

API

Tutorials

Oct 17, 2016 Sprenkle - CSCI209 11

VERSION CONTROL

Oct 17, 2016 Sprenkle - CSCI209 12

Problems in Collaborating on Code

Developers

Design .!
Evaluate Implement

* Different parts (e.g., user

Creating many interface and backend)

prototypes * > | developer implementing
- What if don’t like concurrently
recent prototype? -What if one introduces a
Need to go back to bug?

older version

Oct 17, 2016 Sprenkle - CSCI209 13

Version Control Features

Synchronization
» Lets people share files
» Stay up-to-date with the latest version
Backup and Restore
» Files are saved as they are edited
> Revert to a specific version/checkpoint
Track changes to code
» Save comments explaining why change happened
» Stored in the VCS, not the file
» Track how, why a file evolves over time
Track ownership
» Tags every change with the name of the person who made it

Oct 17, 2016 Sprenkle - CSCI209 14

Version Control Features

Short-term undo
Messed up a file? Go back to the last good version
Long-term undo

Created a bug a year ago? Jump back to see change you
made.

Sandboxing

Making a big change? Make temporary changes in
isolated area, test, work out kinks before “checking in”
your changes

Branching and merging

Branch a copy of your code into a separate area, modify
it in isolation (tracking changes separately)

Later, merge work into common area

Oct 17, 2016 Sprenkle - CSCI209 15

Version Control Systems

Popular Version Control Systems
CVS, Subversion, Git, ...

Terms used are common for most version control
systems

We will use Subversion with Subclipse

Mark Phippard, a W&L grad works on both

Chief Architect at CollabNet, the company that
founded Subversion

Subclipse lead

Oct 17, 2016 Sprenkle - CSCI209 16

Using Version Control

Users

¢ Have own copy of code—>

“Working Copy”
Repository e Checkout, commit, update
code

e Keeps public copy of code:
versions of all files, Code
comments about changes,
who made changes

Oct 17, 2016 Sprenkle - CSCI209 17

Using Version Control: checkout

To start, need to checkout your working copy
of the code

checkout

‘ Repository | > Code
)

Code

Oct 17, 2016 Sprenkle - CSCI209 18

Using Version Control: commit

After you make changes that you want others to
see, commit your version

» Include comments about what changes you made
and why
commit

I >
Repository I comments? Code
comments
e Checks for conflicts
e Updates each modified file
e Records comments with

updated files

Oct 17, 2016 Sprenkle - CSCI209 19

Using Version Control: commit

After you make changes that you want others to
see, commit your version

» Include comments about what changes you made
and why
commit

I >
Repository I comments? Code
comments
e Checks for conflicts
e Updates each modified file
e Records comments with

updated files

Oct 17, 2016 Sprenkle - CSCI209

Using Version Control: commit

After you make changes that you want others to
see, commit your version

e N
— commit
Repository . > Code
C conflicts
e Checks for conflicts: e Update code,
code conflicts with recent fix conflicts
changes in the public copy e Try commit again

Oct 17, 2016 Sprenkle - CSCI209 21

Using Version Control: update

To see the current version of the code, update
your repository
» Resolve conflicts

— update
Repository -~ > Code
code

I

Oct 17, 2016 Sprenkle - CSCI209 22

Using Version Control: add, delete

You need to add and delete files and
directories to the repository, then commit

— commit
Repository > Code

e Add, delete files
and directories
e Commit

e Create new records for added files
e Close records for deleted files
e Files not deleted from repository

Oct 17, 2016 Sprenkle - CSCI209 23

Version Control Advice

Does not eliminate need for communication

» Process becomes much more difficult if developers
do not communicate

Before picking up again, update your working

copy

Commit only after you’ve tested code and you're

fairly sure it works

» Write descriptive comments so your team members
know what you did and why

Oct 17, 2016 Sprenkle - CSCI209 24

Code Organization

Organize code into appropriate structure

Named snapshots MyProject
of code —

Main line of
N development

branches tags { trunk V
p |

/

Active variations dir file
of the trunk - -
Oct 17, 2016 Sprenkle - CSCI209

25

SUBCLIPSE

Oct 17, 2016 Sprenkle - CSCI209

26

Subclipse

Plugin for Eclipse

Installation instructions online
Includes Configuration instructions too

Subversion Practice due by end of day today

Oct 17, 2016 Sprenkle - CSCI209 27

SVN Rules

Communicate with your teammates

Describe your committed changes in comments

Let’s your teammates know what you’re doing—
what changes to look for

Don’t commit the b1in directory/class files

Don’t commit files that are specific to your
account

.classpath, .project, .settings

Oct 17, 2016 Sprenkle - CSCI209 28

Project 1: Testing Practice

Given: a Car class that only has enough code to
compile
Your job: Create a good set of test cases that
thoroughly/effectively test Car class

> Find faults in my faulty version of Car class

» Start: look at code, think about how to test, set up
JUnit tests

» Written analysis of process
Due next Wednesday
» Wed, Fri —work on the project

Oct 17, 2016 Sprenkle - CSCI209 29

