Objectives

Coverage tools
Eclipse Debugger
Object-oriented Design Principles
Design in the Small
DRY
Single responsibility principle
Shy
Open-closed principle

Oct 26, 2016 Sprenkle - CSCI209

Review

What are points in our testing continuum?
What are the tradeoffs?
How can we use coverage criteria?

What does coverage not guarantee?

Oct 26, 2016 Sprenkle - CSCI209




Review: Testing Continuum

No testing Statement- Path- Exhaustive
Coverage Coverage Testing
Branch-
Coverage

Oct 26, 2016 Sprenkle - CSCI209 3

Review: Uses of Coverage Criteria

“Stopping” rule - sufficient testing
» Avoid unnecessary, redundant tests
Measure test quality
» Dependability estimate
» Confidence in estimate
Specify test cases
» Describe additional test cases needed

Oct 26, 2016 Sprenkle - CSCI209 4




Coverage Criteria Discussion

Is it always possible for a test suite to cover all
the statements in a given program?
No. Could be infeasible statements
Unreachable code
Legacy code
Configuration that is not on site
Do we need the test suite to cover 100% of
statements/branches to believe it is adequate?
100% coverage does not mean correct program
But < 100% coverage does mean testing inadequacy

Oct 26, 2016 Sprenkle - CSCI209 5

True/False Quiz

A program that passes all test cases in a test
suite with 100% path coverage is bug-free.
False.
Examples:

The test suite may cover a faulty path with data
values that don’t expose the fault.

» Towards Exhaustive Testing
Errors of omission
» Missing a whole if

Oct 26, 2016 Sprenkle - CSCI209 6




exampleMethod(int a)

Example L
int b=60;
Test Suite: “ ! ) 2
3-7: a=3 naz
4-6: a=30 s T TNGEe
3-6: a=6 a+=2; a-=10;
4-7: a=9 .
ifta> 10)
But, error shows up with 6 tr‘V\false ;
3-7:a=0 b *= 2: By "
4-7: a=10 4 d
D= by O
return b;
Oct 26, 2016 Sprenkle - CSCI209 7

True/False Quiz

When you add test cases to a test suite that
covers all statements so that it covers all
branches, the new test suite is more likely to be
better at exposing faults.

True.

You’re adding test cases and covering new paths,
which may have faults.

Oct 26, 2016 Sprenkle - CSCI209 8




Which Test Suite Is Better?

Branch-adequate suite is not necessarily better
than Statement-adequate suite

Statement-adequate suite could cover buggy paths

and include input value tests that Branch-adequate
suite doesn’t

Oct 26, 2016 Sprenkle - CSCI209 9

exampleMethod(int a)
Example l
int b=60;
TS1 (Statement-Adequate): |
a=0, 6 ifla<7)
TS2 (Branch-Adequate):
a=3, 30
Statement-adequate will
find fault but branch- ifta>10)
adequate won’t /\
Covers the path that exposes b *=2; b/=a;

the fault \/

return b;
Oct 26, 2016 Sprenkle - CSCI209 10




Software Testing: When is Enough Enough?

Need to decide when tested enough

Balance goals of releasing application, high quality
standards

Can use program coverage as “stopping” rule
Also measure of confidence in test suite
Statement, Branch, Path and their tradeoffs

Use coverage tools to measure statement, branch
coverage

Still, need to use some other “smarts” besides
program coverage for creating test cases

Oct 26, 2016 Sprenkle - CSCI209 11

COVERAGE TOOLS

Oct 26, 2016 Sprenkle - CSCI209 12




Coverage Tools

Coverage is used in practice
Don’t need to figure out coverage manually

Available tools to calculate coverage

» Examples for Java programs: Cobertura, Clover,
JCoverage, Emma

» Measure statement, branch/conditional, method
coverage

Oct 26, 2016 Sprenkle - CSCI209 13

Eclipse Plugin: EclEmma for Coverage

Eclipse can be extended through plugins
» Provide additional functionality

EclEmma Plugin

» Records executing program’s (or JUnit test case’s)
coverage

» Displays coverage graphically

Directions for installation are on the pre-class slides.

Oct 26, 2016 Sprenkle - CSCI209 14




Demonstration ‘.~

Execute test with coverage

Oct 26, 2016 Sprenkle - CSCI209 15

Note: Coverage and Testing Project

You won’t be able to leverage coverage for the
testing project
Even if you write code, it's not _my_ code.

Challenge of test-driven development (TDD)
Common practice in industry

Oct 26, 2016 Sprenkle - CSCI209 16




ECLIPSE DEBUGGER DEMO

Oct 26, 2016 Sprenkle - CSCI209

17

OBJECT-ORIENTED DESIGN
PRINCIPLES

Oct 26, 2016 Sprenkle - CSCI209

18




Designing Systems

All systems change
during their life cycle

» Requirements change
» Misunderstandings in requirements

Code must be soft
» Flexible
» Easy to change
New or revised circumstances

New contexts
Oct 26, 2016 Sprenkle - CSCI209 19

Designing Systems

All systems change during their life cycle

Questions to consider:

» How can we create designs that are stable in the face
of change?

» How do we know if our designs aren’t maintainable?

» What can we do if our code isn’t maintainable?
Answers will help us

» Design our own code

» Understand others’ code

Oct 26, 2016 Sprenkle - CSCI209 20




Designing for Change Example

July 2010, Oracle released Java 6 update 21
Generated java.dll replaced
COMPANY_NAME=Sun Microsystems, Inc. with
COMPANY_NAME=0racle Corporation
Change caused OutOfMemoryError during
Eclipse launch
Eclipse versions 3.3-3.6 (widespread!)
Why? Eclipse uses the name in the DLL in startup
(runtime parameters) on Windows
Temporary Fix: Oracle changed name back

Requires changes to all Eclipse versions
Source: http://www.infoq.com/news/2010/07/eclipse-java-6u2l

Overview Best Practices

(DRY): Don’t repeat yourself
Single Responsibility Principle
Shy

Avoid Coupling
Tell, Don’t Ask
Open-closed principle
Avoid code smells

A lot of similar, related fundamental principles

Oct 26, 2016 Sprenkle - CSCI209 22




Don’t Repeat Yourself (DRY):
Knowledge Representation

Every piece of knowledge must have a
single, unambiguous, and authoritative
representation within a system

Intuition: when need to change representation,

make in only one place

Requires planning

What data needed, how represented (e.g., type)

Oct 26, 2016 Sprenkle - CSCI209

23

Single Responsibility Principle

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

Oct 26, 2016 Sprenkle - CSCI209

24




Single Responsibility Principle (SRP)

There should never be more than
one reason for a class to change

Intuition:
Each responsibility is an axis of change
More than one reason to change
Responsibilities become coupled
Changing one may affect the other
Code breaks in unexpected ways

We've talked about this idea in this class.
0ct 26, 2016 Give an example of adhering to SRP. 2

Example

interface Network {
public void connect();
public void disconnect();
public void send(String s);
public String receive();

}

Reasonable interface
But has two responsibilities
Can you group the functionality into two responsibilities?

Check:

Change for different reasons? Called from different parts
of program?

Oct 26, 2016 Sprenkle - CSCI209 26




Shy Code

Won't reveal too much of itself

Otherwise: get coupling
Static, dynamic, domain, temporal

Coupling isn’t always bad...

What techniques have we discussed
for how to keep our code shy?

Oct 26, 2016 Sprenkle - CSCI209 27

Achieving Shy Code

Private instance variables

How can you make any

Especially mutable fields PO AN

Make classes public only when need to be public
i.e., accessible by other classes—> part of API

Getter methods shouldn’t return private,
mutable state/objects

Use clone() before returning

Oct 26, 2016 Sprenkle - CSCI209 28




Static Coupling

Description: Code requires other code to compile

Problem if you include more than you need
Example: poor use of inheritance
Brings excess baggage

Inheritance is reserved for “is-a” relationships
» Base class should not include optional behavior
» Not “uses-a” or “has-a”

Solution: use composition or delegation instead

Oct 26, 2016 Sprenkle - CSCI209 29

Dynamic Coupling

Description: Code uses other code at runtime

getOrder().getCustomer().
getAddress().getState()

Why a problem: Relies on several objects/classes
and their state

If others change, my code has to change

Solution: Talk directly to code

Oct 26, 2016 Sprenkle - CSCI209 30




Domain Coupling

Description: Business rules, policies are
embedded in code

Why a problem: if change frequently, code has to
change frequently

Solution: put into another place (metadata)
Database, property file
Process the rules

Oct 26, 2016 Sprenkle - CSCI209 31

Temporal Coupling

Description: Dependencies on time
Order that things occur
Occur at a certain time
Occur by a certain time
Occur at the same time

Solution: Write concurrent code

Oct 26, 2016 Sprenkle - CSCI209 32




Tell, Don’t Ask

Think of methods as “sending a message”
Method call: sends a request to do something

Don’t ask about details
Black-box, encapsulation, information hiding

Oct 26, 2016 Sprenkle - CSCI209 33

Open-Closed Principle

Bertrand Meyer
Author of Object-Oriented Software Construction
Foundational text of OO programming

Principle: Software entities (classes, modules,
methods, etc.) should be open for extension
but closed for modification

Design modules that never change after completely
implemented
If requirements change, extend behavior by adding

code
Don’t change existing code = won’t create bugs!

Oct 26, 2016 Sprenkle - CSCI209 34




Attributes of Software that Adhere to OCP

Open for Extension
Behavior of module can be extended
Make module behave in new and different ways

Closed for Modification
No one can make changes to module

These attributes seem to be at odds with each other.
How can we resolve them?

Oct 26, 2016 Sprenkle - CSCI209 35

Using Abstraction

Abstract base classes or interfaces
Fixed abstraction = API
Cannot be changed

Derived classes: possible behaviors

Can always create new child classes of abstract base
class

Oct 26, 2016 Sprenkle - CSCI209 36




Not Open-Closed Principle

Client uses Server class

public class Client {
public void method(Server x) {

-
}

Client Server

Oct 26, 2016 Sprenkle - CSCI209 37

Open-Closed Principle

Or ServerInterface

Client uses AbstractServer class

public class Client {
public void method(AbstractServer x) {

ooe

Abstract
Server

exten

Oct 26, 2016 Sprenkle - CSCI209 38




Strategic Closure

No significant program can be completely closed

Must choose kinds of changes to close
Requires knowledge of users, probability of changes

Oct 26, 2016 Sprenkle - CSCI209 39

Heuristics and Conventions

Member variables are private
A method that depends on a variable cannot be closed to
changes to that variable
The class itself can’t be closed to it

All other classes should be

No global variables
Every module that depends on global variable cannot be
closed to changes to that variable
What happens if someone uses variable in unexpected
way?
Counter examples: System.out, System.1in
w Apply abstraction to parts you
Oct 26, 2016 think are going to change 40




TODO

Project 1: Due tonight!
Extra credit opportunities

Oct 26, 2016 Sprenkle - CSCI209

41




