
10/26/16

1

Objec&ves	
• Coverage	tools	
• Eclipse	Debugger	
• Object-oriented	Design	Principles	

Ø Design	in	the	Small	
Ø DRY	
Ø Single	responsibility	principle	
Ø Shy	
Ø Open-closed	principle	

Oct	26,	2016	 Sprenkle	-	CSCI209	 1	

Review	
• What	are	points	in	our	tes&ng	con&nuum?	

Ø What	are	the	tradeoffs?	

• How	can	we	use	coverage	criteria?	
• What	does	coverage	not	guarantee?	

Oct	26,	2016	 Sprenkle	-	CSCI209	 2	

10/26/16

2

Review:	Tes&ng	Con&nuum	

Oct	26,	2016	 Sprenkle	-	CSCI209	 3	

No testing Exhaustive
Testing

Branch-
Coverage

Statement-
Coverage

Path-
Coverage

Review:	Uses	of	Coverage	Criteria	
• “Stopping”	rule	à	sufficient	tes&ng	

Ø Avoid	unnecessary,	redundant	tests	
• Measure	test	quality	

Ø Dependability	es&mate	
Ø Confidence	in	es&mate	

• Specify	test	cases	
Ø Describe	addi&onal	test	cases	needed	

Oct	26,	2016	 Sprenkle	-	CSCI209	 4	

10/26/16

3

Coverage	Criteria	Discussion	
•  Is	it	always	possible	for	a	test	suite	to	cover	all	
the	statements	in	a	given	program?	
Ø No.		Could	be	infeasible	statements	

• Unreachable	code	
• Legacy	code	
• Configura&on	that	is	not	on	site	

• Do	we	need	the	test	suite	to	cover	100%	of	
statements/branches	to	believe	it	is	adequate?	
Ø 100%	coverage	does	not	mean	correct	program	
Ø But	<	100%	coverage	does	mean	tes&ng	inadequacy	

Oct	26,	2016	 Sprenkle	-	CSCI209	 5	

True/False	Quiz	
• A	program	that	passes	all	test	cases	in	a	test	
suite	with	100%	path	coverage	is	bug-free.	
Ø False.	
Ø Examples:	

• The	test	suite	may	cover	a	faulty	path	with	data	
values	that	don’t	expose	the	fault.	
Ø Towards	Exhaus&ve	Tes&ng	

• Errors	of	omission	
Ø Missing	a	whole	if	

Oct	26,	2016	 Sprenkle	-	CSCI209	 6	

10/26/16

4

Oct	26,	2016	 Sprenkle	-	CSCI209	

Example	 exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a += 2; a -= 10;

if(a > 10)

b *= 2; b /= a;

Test Suite:
 3-7: a=3
 4-6: a=30
 3-6: a=6
 4-7: a=9

But, error shows up with

 3-7: a=0
 4-7: a=10

1

true

true

false

false

2

3 4

5

6 7

8 Could divide

by 0

7	

True/False	Quiz	
• When	you	add	test	cases	to	a	test	suite	that	
covers	all	statements	so	that	it	covers	all	
branches,	the	new	test	suite	is	more	likely	to	be	
beier	at	exposing	faults.	
Ø True.	
Ø You’re	adding	test	cases	and	covering	new	paths,	
which	may	have	faults.	

Oct	26,	2016	 Sprenkle	-	CSCI209	 8	

10/26/16

5

Oct	26,	2016	 Sprenkle	-	CSCI209	

Which	Test	Suite	Is	Beier?	

9	

Statement-
adequate
Test Suite

Branch-
adequate
Test Suite

• Branch-adequate	suite	is	not	necessarily	beier	
than	Statement-adequate	suite	
Ø Statement-adequate	suite	could	cover	buggy	paths	
and	include	input	value	tests	that	Branch-adequate	
suite	doesn’t	

Example	
• TS1	(Statement-Adequate):	

Ø a=0,	6	
• TS2	(Branch-Adequate):	

Ø a=3,	30	
• Statement-adequate	will	
find	fault	but	branch-	
adequate	won’t	
Ø Covers	the	path	that	exposes	
the	fault	

Oct	26,	2016	 Sprenkle	-	CSCI209	 10	

exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a *= 2;

if(a > 10)

b *= 2; b /= a;

10/26/16

6

Sonware	Tes&ng:	When	is	Enough	Enough?	

• Need	to	decide	when	tested	enough	
Ø Balance	goals	of	releasing	applica&on,	high	quality	
standards	

• Can	use	program	coverage	as	“stopping”	rule	
Ø Also	measure	of	confidence	in	test	suite	
Ø Statement,	Branch,	Path	and	their	tradeoffs	
Ø Use	coverage	tools	to	measure	statement,	branch	
coverage	

• S&ll,	need	to	use	some	other	“smarts”	besides	
program	coverage	for	crea&ng	test	cases	

Oct	26,	2016	 Sprenkle	-	CSCI209	 11	

COVERAGE	TOOLS	

Oct	26,	2016	 Sprenkle	-	CSCI209	 12	

10/26/16

7

Coverage	Tools	
• Coverage	is	used	in	prac&ce	
• Don’t	need	to	figure	out	coverage	manually	
• Available	tools	to	calculate	coverage	

Ø Examples	for	Java	programs:	Cobertura,	Clover,	
JCoverage,	Emma	

Ø Measure	statement,	branch/condi&onal,	method	
coverage	

Oct	26,	2016	 Sprenkle	-	CSCI209	 13	

Eclipse	Plugin:	EclEmma	for	Coverage	
• Eclipse	can	be	extended	through	plugins	

Ø Provide	addi&onal	func&onality	

• EclEmma	Plugin	
Ø Records	execu&ng	program’s	(or	JUnit	test	case’s)	
coverage	

Ø Displays	coverage	graphically	

Oct	26,	2016	 Sprenkle	-	CSCI209	 14	

Directions for installation are on the pre-class slides.

10/26/16

8

Demonstra&on	
• Execute	test	with	coverage	

Oct	26,	2016	 Sprenkle	-	CSCI209	 15	

Note:	Coverage	and	Tes&ng	Project	
• You	won’t	be	able	to	leverage	coverage	for	the	
tes&ng	project	
Ø Even	if	you	write	code,	it’s	not	_my_	code.	

• Challenge	of	test-driven	development	(TDD)	
Ø Common	prac&ce	in	industry	
	

Oct	26,	2016	 Sprenkle	-	CSCI209	 16	

10/26/16

9

ECLIPSE	DEBUGGER	DEMO	

Oct	26,	2016	 Sprenkle	-	CSCI209	 17	

OBJECT-ORIENTED	DESIGN	
PRINCIPLES	

Oct	26,	2016	 Sprenkle	-	CSCI209	 18	

10/26/16

10

Designing	Systems	

Ø Requirements	change	
Ø Misunderstandings	in	requirements	

• Code	must	be	so+	
Ø Flexible	
Ø Easy	to	change	

• New	or	revised	circumstances	
• New	contexts	

Oct	26,	2016	 Sprenkle	-	CSCI209	 19	

All systems change �
during their life cycle

Designing	Systems	

• Ques&ons	to	consider:	
Ø How	can	we	create	designs	that	are	stable	in	the	face	
of	change?	

Ø How	do	we	know	if	our	designs	aren’t	maintainable?	
Ø What	can	we	do	if	our	code	isn’t	maintainable?	

• Answers	will	help	us	
Ø Design	our	own	code	
Ø Understand	others’	code	

Oct	26,	2016	 Sprenkle	-	CSCI209	 20	

All systems change during their life cycle

10/26/16

11

Designing	for	Change	Example	
• July	2010,	Oracle	released	Java	6	update	21	

Ø Generated	java.dll	replaced		
• COMPANY_NAME=Sun	Microsystems,	Inc.	with	
• COMPANY_NAME=Oracle	Corpora&on		

• Change	caused	OutOfMemoryError during	
Eclipse	launch	
Ø Eclipse	versions	3.3-3.6	(widespread!)	
Ø Why?	Eclipse	uses	the	name	in	the	DLL	in	startup	
(run&me	parameters)	on	Windows	

• Temporary	Fix:	Oracle	changed	name	back	
• Requires	changes	to	all	Eclipse	versions	

Oct	26,	2016	 Sprenkle	-	CSCI209	 21	Source:		http://www.infoq.com/news/2010/07/eclipse-java-6u21

Overview	Best	Prac&ces	

• (DRY):	Don’t	repeat	yourself	
• Single	Responsibility	Principle	
• Shy	

Ø Avoid	Coupling	
• Tell,	Don’t	Ask	
• Open-closed	principle	
• Avoid	code	smells	

Oct	26,	2016	 Sprenkle	-	CSCI209	 22	

A lot of similar, related fundamental principles

10/26/16

12

Don’t	Repeat	Yourself	(DRY):	 	 	
	Knowledge	Representa&on	

• IntuiDon:	when	need	to	change	representa&on,	
make	in	only	one	place	

	
• Requires	planning	

Ø What	data	needed,	how	represented	(e.g.,	type)	

Oct	26,	2016	 Sprenkle	-	CSCI209	 23	

Every piece of knowledge must have a �
single, unambiguous, and authoritative

representation within a system

Single	Responsibility	Principle	

Oct	26,	2016	 Sprenkle	-	CSCI209	 24	

10/26/16

13

Single	Responsibility	Principle	(SRP)	

	
• IntuiDon:	

Ø Each	responsibility	is	an	axis	of	change	
• More	than	one	reason	to	change	

Ø Responsibili&es	become	coupled	
• Changing	one	may	affect	the	other	
• Code	breaks	in	unexpected	ways	

Oct	26,	2016	 Sprenkle	-	CSCI209	 25	

There should never be more than �
one reason for a class to change

We’ve	talked	about	this	idea	in	this	class.	
Give	an	example	of	adhering	to	SRP.	

Example	

• Reasonable	interface	
• But	has	two	responsibili&es	

Ø Can	you	group	the	func&onality	into	two	responsibili&es?	
• Check:	

Ø Change	for	different	reasons?		Called	from	different	parts	
of	program?	

Oct	26,	2016	 Sprenkle	-	CSCI209	 26	

interface Network {
public void connect();
public void disconnect();
public void send(String s);
public String receive();

}

10/26/16

14

Shy	Code	
• Won’t	reveal	too	much	of	itself	
• Otherwise:	get	coupling	

Ø Sta&c,	dynamic,	domain,	temporal	

• Coupling	isn’t	always	bad…	

Oct	26,	2016	 Sprenkle	-	CSCI209	 27	

What techniques have we discussed
for how to keep our code shy?

Achieving	Shy	Code	
• Private	instance	variables	

Ø Especially	mutable	fields	

• Make	classes	public	only	when	need	to	be	public	
Ø i.e.,	accessible	by	other	classesà	part	of	API	

• Geier	methods	shouldn’t	return	private,	
mutable	state/objects	
Ø Use	clone()	before	returning	

Oct	26,	2016	 Sprenkle	-	CSCI209	 28	

How can you make any
field immutable?

10/26/16

15

Sta&c	Coupling	
• Descrip&on:	Code	requires	other	code	to	compile	
• Problem	if	you	include	more	than	you	need	

Ø Example:	poor	use	of	inheritance	
• Brings	excess	baggage	
•  Inheritance	is	reserved	for	“is-a”	rela&onships	

Ø Base	class	should	not	include	op&onal	behavior		
Ø Not	“uses-a”	or	“has-a”		

• Solu&on:	use	composi1on	or	delega1on	instead	

Oct	26,	2016	 Sprenkle	-	CSCI209	 29	

Dynamic	Coupling	
• Descrip&on:	Code	uses	other	code	at	run&me	

Ø getOrder().getCustomer().  
getAddress().getState()

• Why	a	problem:	Relies	on	several	objects/classes	
and	their	state	
Ø If	others	change,	my	code	has	to	change	

• Solu&on:	Talk	directly	to	code	
Oct	26,	2016	 Sprenkle	-	CSCI209	 30	

10/26/16

16

Domain	Coupling	
• Descrip&on:	Business	rules,	policies	are	
embedded	in	code	

• Why	a	problem:	if	change	frequently,	code	has	to	
change	frequently	

• Solu&on:	put	into	another	place	(metadata)	
Ø Database,	property	file	
Ø Process	the	rules	

Oct	26,	2016	 Sprenkle	-	CSCI209	 31	

Temporal	Coupling	
• Descrip&on:	Dependencies	on	&me	

Ø Order	that	things	occur	
Ø Occur	at	a	certain	&me	
Ø Occur	by	a	certain	&me	
Ø Occur	at	the	same	&me	

• Solu&on:	Write	concurrent	code	

Oct	26,	2016	 Sprenkle	-	CSCI209	 32	

10/26/16

17

Tell,	Don’t	Ask	
• Think	of	methods	as	“sending	a	message”	
• Method	call:	sends	a	request	to	do	something	

Ø Don’t	ask	about	details	
Ø Black-box,	encapsula&on,	informa&on	hiding	

Oct	26,	2016	 Sprenkle	-	CSCI209	 33	

Open-Closed	Principle	
• Bertrand	Meyer	

Ø Author	of	Object-Oriented	So+ware	Construc1on	
•  Founda&onal	text	of	OO	programming	

• Design	modules	that	never	change	aner	completely	
implemented	

•  If	requirements	change,	extend	behavior	by	adding	
code	
Ø Don’t	change	exis&ng	code	à	won’t	create	bugs!	

Oct	26,	2016	 Sprenkle	-	CSCI209	 34	

Principle: Software entities (classes, modules,
methods, etc.) should be open for extension

but closed for modification

10/26/16

18

Aiributes	of	Sonware	that	Adhere	to	OCP	

• Open	for	Extension	
Ø Behavior	of	module	can	be	extended	
Ø Make	module	behave	in	new	and	different	ways	

• Closed	for	Modifica&on	
Ø No	one	can	make	changes	to	module	

Oct	26,	2016	 Sprenkle	-	CSCI209	 35	

These attributes seem to be at odds with each other.
How can we resolve them?

Using	Abstrac&on	
• Abstract	base	classes	or	interfaces	

Ø Fixed	abstrac&on	à	API	
Ø Cannot	be	changed	

• Derived	classes:	possible	behaviors	
Ø Can	always	create	new	child	classes	of	abstract	base	
class	

Oct	26,	2016	 Sprenkle	-	CSCI209	 36	

10/26/16

19

Not	Open-Closed	Principle	
• Client uses	Server class	

Oct	26,	2016	 Sprenkle	-	CSCI209	 37	

Client Server

public class Client {
public void method(Server x) {
…
}

}

Open-Closed	Principle	
• Client uses	AbstractServer class	

Oct	26,	2016	 Sprenkle	-	CSCI209	 38	

Client Abstract
Server

public class Client {
public void method(AbstractServer x) {
…
}

}

Server

extends Server2

Or ServerInterface

10/26/16

20

Strategic	Closure	
• No	significant	program	can	be	completely	closed	

• Must	choose	kinds	of	changes	to	close	
Ø Requires	knowledge	of	users,	probability	of	changes	

Oct	26,	2016	 Sprenkle	-	CSCI209	 39	

Goal: Most probable changes should be closed

Heuris&cs	and	Conven&ons	
• Member	variables	are	private	

Ø A	method	that	depends	on	a	variable	cannot	be	closed	to	
changes	to	that	variable	

Ø The	class	itself	can’t	be	closed	to	it	
Ø All	other	classes	should	be	

• No	global	variables	
Ø Every	module	that	depends	on	global	variable	cannot	be	
closed	to	changes	to	that	variable	

Ø What	happens	if	someone	uses	variable	in	unexpected	
way?	

Ø Counter	examples:	System.out, System.in

Oct	26,	2016	 Sprenkle	-	CSCI209	 40	

➥ Apply abstraction to parts you
think are going to change

10/26/16

21

TODO	
• Project	1:	Due	tonight!	
• Extra	credit	opportuni&es	

Oct	26,	2016	 Sprenkle	-	CSCI209	 41	

