
10/31/16

1

Objec&ves	
• Liskov	Subs&tu&on	Principle	
• Refactoring	for	Extensibility	

Oct	31,	2016	 Sprenkle	-	CSCI209	 1	

Review	
• What	are	reasons	that	we	refactor	our	code?	

Ø What	are	the	goals	in	refactoring?	
Ø What	is	not	necessarily	a	goal?	

• What	are	some	clues	we	can	use	that	we	should	
consider	refactoring	our	code?	
Ø What	are	those	clues	called?	

Oct	31,	2016	 Sprenkle	-	CSCI209	 2	

10/31/16

2

Refactoring	Prac&ce	

Oct	30,	2015	 Sprenkle	-	CSCI209	 3	

if (type.equals("topic")){
String array[] = new String[2];
for (int i = 0; i < bookNum; i++){

Book currentBook = books.get(i);
if (currentBook.getTopic().equals(argument)){

flag += 1;
array[0] = "true";
if (flag == 1) //if we append each time, there will

// be a 'null' at the beginning
array[1] = "Title: " + currentBook.getTitle() + "\n" +

"Item Number: " + currentBook.getItemNumber();
else array[1] += "Title: " + currentBook.getTitle() +

"\n" + "Item Number: " + currentBook.getItemNumber();
 }
 }
 if (flag == 0){
 array[0] = "false";

array[1] = "No items match your query\n”;
}

}

Bookstore application

Refactoring	Prac&ce	

Nov	2,	2015	 Sprenkle	-	CSCI209	 4	

if prompt.split(" ")[0] == "buy" and nextCond == False:
result = server.FrontEnd.buy(int(prompt.split(" ")[1]))

 array = server.FrontEnd.lookup(int(prompt.split(" ")[1]))

 if result == True:
 nextCond = True
 print "bought book " + str(array[0])

 else:
 nextCond = True
 print "Book out of stock or doesn't exist"

Refactoring is a general concept: applies to Python too!

10/31/16

3

Refactoring	Prac&ce	

Nov	2,	2015	 Sprenkle	-	CSCI209	 5	

values = prompt.split(" ")
if values[0] == "buy" and not nextCond:

myVal = int(values[1])
result = server.FrontEnd.buy(myVal)

 array = server.FrontEnd.lookup(myVal)

 if result:
 nextCond = True
 print "bought book " + str(array[0])

 else:
 nextCond = True
 print "Book out of stock or doesn't exist"

Refactoring is a general concept: applies to Python too!

LISKOV	SUBSTITUTION	PRINCIPLE	

Oct	31,	2016	 Sprenkle	-	CSCI209	 6	

10/31/16

4

Liskov	Subs&tu&on	Principle	(LSP)	
• The	subs&tu&on	principle:	

•  In	other	words…	

Oct	31,	2016	 Sprenkle	-	CSCI209	 7	

If for each object o1 of type S there is an object o2 of
type T such that for all programs P defined in terms of T,

the behavior of P is unchanged �
when o1 is substituted for o2, �

then S is a subtype of T.

If a module is using a base class, then it should �
be able to replace the base class with a derived class �

without affecting the functioning of the module.

Liskov & Wing, 1994

Code	Smell:	Using	instanceof

• Why isn’t this good code?
•  How could we write this in a better way?

Oct	31,	2016	 Sprenkle	-	CSCI209	 8	

public void drawShape(Shape shape) {
if (shape instanceof Square) {

drawSquare(shape);
}
else if(shape instanceof Circle) {

drawCircle(shape);
}

}

10/31/16

5

Code	Smell:	Using	instanceof	
• Previous	example:	had	to	know	all	of	the	Shape
classes	
Ø Update	whenever	a	Shape is	added	or	removed	

• BeZer	code:	Polymorphic!	

Oct	31,	2016	 Sprenkle	-	CSCI209	 9	

public void drawShape(Shape shape) {
shape.draw();

}

Design	by	Contract	
• Methods	of	classes	declare	precondi&ons	and	
postcondi&ons	
Ø Precondi&ons	must	be	met	for	method	to	execute	
Ø A_er	execu&ng,	postcondi&ons	must	be	true	

• Example	for	Rectangle’s	setWidth:	
Ø myWidth == newWidth &&  
myHeight == oldHeight

Oct	31,	2016	 Sprenkle	-	CSCI209	 10	

10/31/16

6

Design	by	Contract	and	LSP	
• Methods	of	classes	declare	precondi&ons	and	
postcondi&ons	
Ø Precondi&ons	must	be	met	for	method	to	execute	
Ø A_er	execu&ng,	postcondi&ons	must	be	true	

• Example	for	Rectangle’s	setWidth:	
Ø myWidth == newWidth &&  
myHeight == oldHeight

• For	deriva&ves	
Ø Precondi&ons	can	only	be	weakened	
Ø Postcondi&ons	can	only	be	strengthened	
➥ Deriva&ves	must	adhere	to	constraints	for	base	class	

Oct	31,	2016	 Sprenkle	-	CSCI209	 11	

Design	by	Contract	and	LSP	
• Recall:	User	interacts	with	interface,	e.g.,	the	
base	class	

• For	deriva&ves	
Ø Precondi&ons	can	only	be	weakened	
Ø Postcondi&ons	can	only	be	strengthened	
➥ Deriva&ves	must	adhere	to	constraints	for	base	class	

Oct	31,	2016	 Sprenkle	-	CSCI209	 12	

Base
Class

Derived
Class

Interface

What if preconditions are stronger?
What if postconditions are weaker?

10/31/16

7

Summary	of	LSP	
• Liskov	Subs&tu&on	Principle	(a.k.a.	design	by	
contract)	is	an	important	feature	of	programs	
that	conform	to	the	Open-Closed	Principle	

• Derived	types	must	be	completely	subs&tutable	
for	their	base	types	

• Derived	types	can	then	be	modified	without	
consequence	

Oct	31,	2016	 Sprenkle	-	CSCI209	 13	

Rectangle	Class	

Oct	31,	2016	 Sprenkle	-	CSCI209	 14	

public class Rectangle {
private int myHeight;
private int myWidth;

public void setWidth(int w) {
myWidth = w;

}

public void setHeight(int h) {
myHeight = h;

}

// getters…
}

10/31/16

8

Square	Class	
• A	square	is	a	rectangle	

Ø But	a	rectangle	is	not	a	square	
•  In	the	interest	of	code	reuse	
	
• Any	problems	with	this	implementa&on?	

Ø Inherits:		

Oct	31,	2016	 Sprenkle	-	CSCI209	 15	

public class Square extends Rectangle

private int myHeight;
private int myWidth;
public void setWidth(int w);
public void setHeight(int h);

To	Keep	Square Consistent…	

Oct	31,	2016	 Sprenkle	-	CSCI209	 16	

public void setWidth(int w) {
super.setWidth(w);
super.setHeight(w);

}

public void setHeight(int h) {
super.setWidth(h);
super.setHeight(h);

}

10/31/16

9

But	What	About	Users	of	Classes?	
• Consider	the	func&on:	

• What	happens	if	method	is	called	with	a	
Square object?	

Oct	31,	2016	 Sprenkle	-	CSCI209	 17	

public void testMethod(Rectangle r) {
r.setWidth(5);
r.setHeight(4);
assertEquals(20, r.getWidth()*r.getHeight());

}

The	Problem	
• A	Square object	is	not	a	Rectangle	object	
• Behaviors	are	different	
• Clients	depend	on	behaviors	

Oct	31,	2016	 Sprenkle	-	CSCI209	 18	

Lesson: All derivatives of class �
must have the same behavior

10/31/16

10

Oct	31,	2016	 Sprenkle	-	CSCI209	 19	

http://lostechies.com/derickbailey/2009/02/11/
solid-development-principles-in-motivational-
pictures/

Liskov	Subs&tu&on	Principle	(LSP)	
• Named	a_er	Barbara	Liskov	

Ø MIT	Professor	of	Engineering	
Ø 2008	ACM	Turing	Award	
Ø Contribu&ons	to	programming	
languages,	pervasive	compu&ng	

Ø Trivia:	first	woman	in	the	United	
States	to	receive	a	Ph.D.	from	a	
computer	science	department	
(Stanford,	1968)	

Oct	31,	2016	 Sprenkle	-	CSCI209	 20	Liskov & Wing, 1994

We have an advanced lab machine named after her.

10/31/16

11

&	Wing	
• JeanneZe	Wing	

Ø Corporate	Vice	
President	of	Microso_	
Research	

Ø Big	proponent	of	
computa&onal	
thinking	as	assistant	
director	for	Computer	
and	Informa&on	
Science	and	
Engineering	at	the	NSF	
from	2007	to	2010.	

Oct	31,	2016	 Sprenkle	-	CSCI209	 21	

Discussion	of	Abstrac&on	
• What	does	abstrac&on	allow?	

• Are	there	any	limita&ons	to	abstrac&on?	

Oct	31,	2016	 Sprenkle	-	CSCI209	 22	

10/31/16

12

Summary	of	Designing	for	Change	

• Can	depend	on	code	that	is	stable	and	unlikely	to	
change	
Ø Example	of	stable	code:	System.out

Oct	31,	2016	 Sprenkle	-	CSCI209	 23	

Use abstraction for code �
that is likely to change

Refactoring	Summary	
• Write	code	and	then	rewrite	code	

Ø Eye	toward	extensibility,	flexibility,	maintainability,	and	
readability	

Ø Maintain	correctness	
• Reading/understanding	other	people’s	code	can	be	
difficult	
Ø Make	your	code	readable,	understandable	

• Probably	impossible	to	design/write	“correctly”	the	
first	&me	
Ø A	lot	harder	to	get	the	logic	right,	make	sure	you’re	not	
crea&ng	bugs,	know/check	the	right	answer…	

Ø Could	cause	yourself	headaches	coding	this	way	first	
Oct	31,	2016	 Sprenkle	-	CSCI209	 24	

10/31/16

13

REFACTORING	FOR	EXTENSIBILITY	

Oct	31,	2016	 Sprenkle	-	CSCI209	 25	

Simula&ng	a	RouleZe	Game	
• See	handout	

Oct	31,	2016	 Sprenkle	-	CSCI209	 26	

In Eclipse, Import Existing Project into Workspace
roulette.tar on the course web site

10/31/16

14

Understanding	Code	
• Execute	the	code	

Ø What	is	the	main	driver	for	this	project?	

• What	are	each	class’s	responsibili&es?	

Oct	31,	2016	 Sprenkle	-	CSCI209	 27	

Bug	in	the	Code	
• Determining	if	Odd/Even	Bet	was	won	is	
incorrect	

Oct	31,	2016	 Sprenkle	-	CSCI209	 28	

10/31/16

15

Understanding	Code	
• Focus:	how	open	is	the	code	to	adding	new	kinds	
of	bets	and	how	closed	it	is	to	modificaDon?	
Ø How	many	classes	know	about	the	Bet class?	
Ø What	code	would	need	to	be	added	to	Game	to	
allow	the	user	to	make	another	kind	of	bet	that	paid	
one	to	one	odds	and	was	based	on	whether	the	
number	spun	was	high	(between	19	and	36)	or	low	
(between	1	and	18)?		

Oct	31,	2016	 Sprenkle	-	CSCI209	 29	

RouleZe	
• Goals	

Ø Learn	to	read,	understand	someone	else’s	code	
• Refactoring	can	help	

Ø Refactor	for	readability	
Ø Jus&fy	decisions	

• No	“right”	answer	
Ø Many	design	decisions	
Ø Want	you	to	defend	your	design	decision	in	code	
cri&que	

Oct	31,	2016	 Sprenkle	-	CSCI209	 30	

10/31/16

16

TODO:	Assign	8	
• For	Wednesday:	

Ø Read	through	the	RouleZe	code	
Ø Answer	the	ques&ons	under	understanding	the	
design	and	refactoring	

• For	next	Monday:	
Ø Refactoring	code	for	extensibility	

• Discuss	tradeoffs	in	designs	
Ø Tes&ng!	

Oct	31,	2016	 Sprenkle	-	CSCI209	 31	

