
11/4/16

1

Objec&ves	
• GUIs	in	Java	

Ø Event	handling	

Nov	4,	2016	 Sprenkle	-	CSCI209	 1	

Assignment	8	Ques&ons?	

Nov	4,	2016	 Sprenkle	-	CSCI209	 2	

11/4/16

2

RouleNe	Review	
• A	capstone	project	for	this	part	of	the	course	
• Bringing	together:	

Ø Applying	design	principles	
Ø Tes&ng	

• Non-determinis&c	

• Need	to	understand	these	well	to	move	to	bigger	
problems/code	bases	

Nov	4,	2016	 Sprenkle	-	CSCI209	 3	

GUIS	IN	JAVA	

Nov	4,	2016	 Sprenkle	-	CSCI209	 4	

11/4/16

3

GUIs	Review	
• What	are	the	two	packages	used	for	GUI	
development	in	Java?	

• What	is	a	component	vs	what	is	a	container?	
• What	are	some	of	the	classes	involved	in	GUI	
programs?	

Nov	4,	2016	 Sprenkle	-	CSCI209	 5	

Java	GUI	Libraries:	AWT	&	Swing	
• AWT:		Abstract	Windowing	Toolkit	

Ø Original	GUI	toolkit	
Ø Relies	on	opera&ng	system	to	render	GUIs	

• Benefit:	Match	look	and	feel	of	pla]orm	
Ø Classes	in	java.awt.*

• Swing:	added	to	Java2	
Ø Classes	in	javax.swing.*
Ø Extends	AWT	
Ø Provides	Java	look	and	feel	for	applica&ons	

• But	can	plug	in	other	look	&	feels	
	Nov	4,	2016	 Sprenkle	-	CSCI209	 6	

11/4/16

4

Swing	&	AWT	
• Swing	does	not	completely	replace	AWT	
• Using	the	Swing	graphics	programming	model	

Ø Improves	performance	
Ø Allows	more	efficient	development	of	GUIs	

• We	will	use	Swing	mostly		
Ø Leverage	AWT	

Nov	4,	2016	 Sprenkle	-	CSCI209	 7	

Swing:	Made	up	of	Components	
• Top-level	components	

Ø ~Hold GUI elements
Ø Examples: JFrame, JWindow, JDialog,
JApplet

• GUI	Elements	
Ø ~Things	user	interacts	with	
Ø Examples: JButton, JLabel, JMenuBar

Nov	4,	2016	 Sprenkle	-	CSCI209	 8	

11/4/16

5

JFrame:	key	class	
• Class	hierarchy	

• JFrame	is	derived	from	java.awt.Frame
Ø Frame class	is	derived	from	Container class	
• Container:	anything	that	can	contain	UI	components	

Ø Lots	of	methods	available	from	the	hierarchy	

Nov	4,	2016	 Sprenkle	-	CSCI209	 9	

Components	&	Containers	
• Component

Ø Abstract	class	
Ø Everything	you	see	is	a	component	

• All	nonmenu-related	AWT	components	
Ø Many	methods	

• Some	deprecated:	be	careful	

• Container
Ø Concrete	implementa&on	of	Component
Ø Base	class	of	many	classes	

Nov	4,	2016	 Sprenkle	-	CSCI209	 10	

11/4/16

6

Container Methods	
• add(Component c)
• setSize

Ø Sets	size	of	frame	in	pixels		

• setLocation
Ø Sets	loca&on	of	frame	

• Coordinates	of	top-lee	corner	
• setBounds

Ø Sets	both	size	and	loca&on	of	frame	
• Provides	informa&on	needed	for	setSize and	
setLocation

Nov	4,	2016	 Sprenkle	-	CSCI209	 11	

Window Methods	
• Top-level	window	
• No	borders	
• No	Menu	Bar	
• dispose()

Ø Closes	window	and	reclaims	resources	associated	
with	it	

• toBack()
Ø Sends	window	to	back,	may	lose	focus/ac&va&on	

• toFront()
Ø Bring	to	front,	make	this	the	focused	window	

Nov	4,	2016	 Sprenkle	-	CSCI209	 12	

11/4/16

7

Frame’s	Methods	

• Top-level	window	with	3tle	and	borders	
• setTitle(String title)

Ø Sets	&tle	of	frame	(displayed	in	&tle	bar)	

• setResizable(boolean resizable)
Ø Can	the	user	resize	the	frame?	

Nov	4,	2016	 Sprenkle	-	CSCI209	 13	

Frame:	Key	Class	

Nov	4,	2016	 Sprenkle	-	CSCI209	 14	

public class Game extends JFrame implements KeyListener {

public static void main(String[] args) {
Game session = new Game();
session.init();

}

public void init() {
// Top-left corner is (0,0)
// width/height: XBOUND, YBOUND
setBounds(0, 0, XBOUND, YBOUND);

 setTitle("Professor vs Goblin");
// Shows the window
setVisible(true);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
…

}
}	

11/4/16

8

Anatomy	of	an	Applica&on	GUI	

Nov	4,	2016	 Sprenkle	-	CSCI209	 15	

JPanel

JButton

JFrame

JLabel

GUI Internal structure

JFrame

JPanel

JButton JLabel

containers

Implemen&ng	a	GUI	Component	
1.  Create	it	
2.  Configure	it	
3.  Add	children	(if	container)	
4.  Add	to	parent	(if	not	JFrame)	
5.  Listen	to	it	

Nov	4,	2016	 Sprenkle	-	CSCI209	 16	

order�
important

11/4/16

9

Implemen&ng	a	GUI	Component	
1.  Create	it	

JButton b = new JButton();
2.  Configure	it	

b.setText("press me");
b.setForeground(Color.blue);

3.  Add	it	to	parent	
panel.add(b);

4.  Listen	to	it	
Ø  Events:	Listeners	

Nov	4,	2016	 17	Sprenkle	-	CSCI209	

Building	a	GUI	
1.  Create	(top	down):	

Ø Frame	
Ø Container	
Ø Components	
Ø Listeners	

2.  Add	(boNom	up):	
Ø Listeners	into	
components	

Ø Components	into	panel	
Ø Panel	into	frame	

Container

JButton

Listener

JFrame

JLabel

Nov	4,	2016	 18	Sprenkle	-	CSCI209	

Content
Pane Create Ad

d

11/4/16

10

Example	Code	
// create the components
JFrame f = new JFrame("title");
f.setBounds(0, 0, 100, 100);
Container pane = f.getContentPane();

JButton b = new JButton("press me");
// add button to panel
pane.add(b);
// show the frame
f.setVisible(true);

Nov	4,	2016	 19	Sprenkle	-	CSCI209	

JFrame	contains	a	ContentPane,  
a	Container that	holds	UI	components	

Prac&ce:	Combining	Components	
• Create	a	frame	whose	panel	has	three	buNons	
on	it	

• What	is	our	process?	

Nov	4,	2016	 Sprenkle	-	CSCI209	 20	

ButtonPanel.java

11/4/16

11

Placement	of	Components	

• How	does	the	panel	know	where	to	place	a	
buNon?	

• How	does	the	panel	know	where	to	place	the	
next	buNon?	

• How	does	the	panel	know	where	to	place	any	
component	that	is	added	to	it?	

Nov	4,	2016	 Sprenkle	-	CSCI209	 21	

LAYOUT	MANAGERS	

Nov	4,	2016	 Sprenkle	-	CSCI209	 22	

11/4/16

12

Layout	Managers	
• Java	uses	layout	managers	to	place	components	
inside	a	container		

• LayoutManager	automa&cally	handles	
placement	of	components	
Ø When	a	component	is	added	to	a	container	(through	
add),	layout	manager	decides	where	to	place	the	
component	

Nov	4,	2016	 Sprenkle	-	CSCI209	 23	

Layout	Manager	Heuris&cs	

Nov	4,	2016	 Sprenkle	-	CSCI209	 24	

Left to right,

Top to bottom

c

n

s

e w

FlowLayout GridLayout

BorderLayout

none,
programmer
sets x,y,w,h

null

One at a time

CardLayout GridBagLayout

JButton

11/4/16

13

Default	Layout	Managers	
• JFrame’s	content	pane:	BorderLayout
• JPanel’s:	FlowLayout

Ø Commonly	used	container	

Nov	4,	2016	 Sprenkle	-	CSCI209	 25	

Changing	Layout	Managers	
• Any	container	can	use	any	layout	manager	
• Use	setLayout to	change	layout	manager	
before	adding	components	

Nov	4,	2016	 Sprenkle	-	CSCI209	 26	

// sets layout to a new flow layout manager that
// aligns row components to the left and uses a 20 pixel
// horizontal separation and 20 pixel vertical separation
setLayout(new FlowLayout(FlowLayout.LEFT, 20, 20));

// sets layout to a new border layout manager that
// uses a 45 pixel horizontal separation between
// components (regions) and a 20 pixel vertical separation
setLayout(new BorderLayout(45, 20));

11/4/16

14

Border	Layout	Manager	
• Default	layout	manager	of	the	content	pane	for	
JFrame

• Lets	you	choose	where	you	want	to	place	each	
component	

Nov	4,	2016	 Sprenkle	-	CSCI209	 27	

with respect to �
the container

Center

North

South

West East

•  Edge	
components	are	
laid	out	first	

•  Center	occupies	
remaining	space	

Adding	Components	Using	a	Border	
Layout	

•  If	no	region	specified,	assumes	center	region	

Ø Recall:	border	layout	grows	component	to	fit	
specified	region	

Nov	4,	2016	 Sprenkle	-	CSCI209	 28	

Container contentPane = getContentPane();
contentPane.add(button, BorderLayout.SOUTH);

What happens if we add multiple components,
e.g., three buttons, without specifying a region?

11/4/16

15

A	Border	Layout	Limita&on	

• Last	buNon	added	grows	to	completely	fill	center	
region	

• Explains	our	previous	example!	
Ø First	two	buNons	were	discarded/overwriNen	by	
each	subsequently	added	component	

Nov	4,	2016	 Sprenkle	-	CSCI209	 29	

Three

Combining	Panels	

Nov	4,	2016	 Sprenkle	-	CSCI209	 30	

JButton JButton

JTextArea

•  Panels	act	as	(smaller)	
containers	for	UI	
elements	

•  Can	be	arranged	inside	a	
larger	panel	by	a	layout	
manager	

•  Use	addi&onal	panels	to	
customize	look	
Ø Create	a	panel	
Ø Add	some	buNons	to	it	
Ø Add	that	panel	to	a	region	
in	content	pan	

11/4/16

16

Combining	Panels	

Nov	4,	2016	 Sprenkle	-	CSCI209	 31	

North

JPanel:
BorderLayout

Center

JFrame

JPanel: FlowLayout

JButtonJButton

JTextArea

Using	Addi&onal	Panels	
• Get	fairly	accurate	and	precise	placement	of		
components	

• Use	nested	panels	with	

Nov	4,	2016	 Sprenkle	-	CSCI209	 32	

FlexibleLayout.java

Layout	 Use	
BorderLayout Content	panes	and	enclosing	panels	

Flow Layouts Panels	containing	buNons	and	other	UI	
components	

11/4/16

17

HANDLING	USER	INTERACTIONS	

Nov	4,	2016	 Sprenkle	-	CSCI209	 33	

Event-Driven	Programming	
• User	ac&ons	(e.g.,	mouse	clicks,	key	presses),	
sensor	outputs,	or	messages	from	other	
applica&ons	determine	flow	of	program	

• Applica&on	architecture:	

Nov	4,	2016	 Sprenkle	-	CSCI209	 34	

while (true) {
event = waitForEvent();
handleEvent(event);

}

11/4/16

18

Event	Basics	

• An	event	is	generated	from	an	event	source	and	
is	transmiNed	to	an	event	listener	

• Event	sources	allow	event	listeners	to	register	
with	them	
Ø Registered	listener	requests	event	source	send	its	
event	to	listener	when	event	occurs	

Nov	4,	2016	 Sprenkle	-	CSCI209	 35	

Event
Source

Event
Listener

Event

Java	Event	Handling	
• All	events	are	objects	of	event	classes	

Ø Derive	from	java.util.EventObject	
• Event	source	

Ø Sends	out	event	objects	to	all	registered	listeners	
when	that	event	occurs	

• Listener	
Ø Implements	a	listener	interface	
Ø Uses	EventObject	to	determine	its	reac&on	to	
the	event	

Nov	4,	2016	 Sprenkle	-	CSCI209	 36	

11/4/16

19

Java	Event	Handling	
• Register	a	listener	with	an	event	source:		
		

• Example:	

Ø Whenever	an	“ac&on	event”	occurs	on	button,	
listener	is	no&fied	
• For	buNons,	an	ac&on	event	is	a	buNon	click	

Nov	4,	2016	 Sprenkle	-	CSCI209	 37	

ActionListener listener = . . .;
JButton button = new JButton("Click Me!");
button.addActionListener(listener);

eventSourceObject.addEventListener(
eventListenerObject);

Listener	Objects	
• A	listener	object	must	be	an	instance	of	a	class	
that	implements	the	appropriate	interface	
Ø For	buNons,	that’s	ActionListener

• Listener	class	must	implement	
actionPerformed(ActionEvent
event)

Nov	4,	2016	 Sprenkle	-	CSCI209	 38	

11/4/16

20

Listener	Objects	and	Event	Handling	
• When	a	user	clicks	a	buNon,	JButton object	
generates	an	ActionEvent object	

• JButton calls	listener	object’s	
actionPerformed	method,	passing	
generated	event	object	

• A	single	event	source	can	have	mul3ple	listeners	
listening	for	its	events	
Ø Source	calls	actionPerformed	on	each	of	its	
listeners	

Nov	4,	2016	 Sprenkle	-	CSCI209	 39	

Which	makes	JButton a	what?	

An	Example	of	Event	Handling	
• Suppose	we	want	to	make	a	panel	that	has	three	
buNons	on	it	
Ø Each	buNon	has	a	color	associated	with	it	
Ø When	user	clicks	a	buNon,	background	color	of	panel	
changes	to	the	corresponding	color	

• We	need	
1.  A	panel	with	3	buNons	on	it	
2.  3	listener	objects,	each	registered	to	listen	for	a	

buNon’s	events	

Nov	4,	2016	 Sprenkle	-	CSCI209	 40	

11/4/16

21

Event	Handling	Example	
1. Make	some	buNons	and	add	them	to	panel	

Nov	4,	2016	 Sprenkle	-	CSCI209	 41	

public class ColoredBackground extends JFrame {
 public ColoredBackground() {

…
Container cp = getContentPane();

JButton red = new JButton("Red");
red.setBackground(Color.RED);
JButton green = new JButton(”Green");
green.setBackground(Color.GREEN);
JButton blue = new JButton("Blue");
blue.setBackground(Color.BLUE);

cp.add(red);
cp.add(green);
cp.add(blue);
…

Listener	Objects	
• We	now	need	listeners	for	our	buNons	(event	
sources)	
Ø An	ac&on	listener	can	be	any	class	that	implements	
the	ActionListener	interface	

• Make	a	new	class	that	implements	the	interface	
Ø actionPerformed method	should	set	the	
background	color	of	panel	

Nov	4,	2016	 Sprenkle	-	CSCI209	 42	

11/4/16

22

Our	Listener	Class:	ColorAction

Nov	4,	2016	 Sprenkle	-	CSCI209	 43	

class ColorAction implements ActionListener {

 private Color backgroundColor;

 public ColorAction(Color c) {
backgroundColor = c;

 }

 public void actionPerformed(ActionEvent evt1) {
 // set panel background color here
 }

}

Registering	Our	Listener	Class	

• Create	ActionListener objects	and	
register	them	with	the	buNons…	

Nov	4,	2016	 Sprenkle	-	CSCI209	 44	

ColorAction greenAction = new ColorAction(Color.green);
ColorAction blueAction = new ColorAction(Color.blue);
ColorAction redAction = new ColorAction(Color.red);

green.addActionListener(greenAction);
blue.addActionListener(blueAction);
red.addActionListener(redAction);

These are JButtons

11/4/16

23

Registering	Our	Listener	Class	
• When	a	user	clicks	the	green	buNon,	the	
JButton	generates	an	ActionEvent
Ø Passes	the	ActionEvent	object	to	
greenAction’s	actionPerformed	method	

Ø Method	can	then	set	frame’s	background	color	

Nov	4,	2016	 Sprenkle	-	CSCI209	

class ColorAction implements ActionListener {
 private Color backgroundColor;
 public ColorAction(Color c) {

backgroundColor = c;
 }
 public void actionPerformed(ActionEvent evt1) {
 // set panel background color here

. . .
 }
} 45	

How	can	we	implement	this?	

The	Listener	Class	&	the	Frame	
• ColorAction objects	don’t	have	access	to	
the	frame	
Ø How	can	they	change	the	frame’s	background	color?	

• Possible	solu&ons?	

Nov	4,	2016	 Sprenkle	-	CSCI209	 46	

11/4/16

24

The	Listener	Class	&	the	Frame	
• ColorAction objects	don’t	have	access	to	
the	buNons	
Ø How	can	they	change	the	background	color?	

• Two	possible	solu&ons:	
1.  Add	a	frame	instance	field	to	ColorAction class	

and	set	it	in	constructor	
• ColorAction object	knows	which	frame	it	is	
associated	with	and	can	call	appropriate	method	to	
change	its	background	color	

2.  Make	ColorAction an	inner	class	

Nov	4,	2016	 Sprenkle	-	CSCI209	 47	

Listener	as	an	Inner	Class	

Nov	4,	2016	 Sprenkle	-	CSCI209	 48	

class ColoredBackground extends JFrame {
 // ColoredBackground code …
 . . .

 private class ColorAction implements ActionListener {
 . . .
 private Color backgroundColor;
 public void actionPerformed(ActionEvent evt) {
 getContentPane().setBackground(backgroundColor);
 }
 }
}

Where	is	this	
method	coming	

from?	

11/4/16

25

Close	Up:	actionPerformed()	

• ColorAction does	not	have	getContentPane()
method	

•  Since	ColorAction is	an	inner	class	of	
ColoredBackground,	ColorAction can	directly	
access	ColoredBackground’s	instance	fields	and	
methods	
Ø  Inner	class	calls	outer	class’s	method	

•  Parameter:	inner’s	private	data	(backgroundColor)	

Nov	4,	2016	 Sprenkle	-	CSCI209	 49	

public void actionPerformed(ActionEvent evt) {
getContentPane().setBackground(backgroundColor);

}

Event	Listeners	as	Inner	Classes	
• A	common	and	beneficial	prac&ce	
• Event	listener	objects	typically	need	to	access/
modify	other	objects	when	their	corresponding	
event	occurs	

•  It	is	oeen	possible	to	place	the	listener	class	
inside	the	class	whose	state	the	listener	should	
modify	

•  It’s	good	OOP	design	
Ø Doesn’t	violate	encapsula&on	rules	
Ø Makes	code	easier	

Nov	4,	2016	 Sprenkle	-	CSCI209	 50	

11/4/16

26

A	Different	Listener	Approach	
• Any	object	of	a	class	that	implements	
ActionListener can	listen	for	ac&on	events	
from	a	source	
Ø Could	make	ColoredBackground listen	for	its	
own	buNons’	events	

Ø Implement	interface	and	do	correct	registering	with	
the	buNons	

Nov	4,	2016	 Sprenkle	-	CSCI209	 51	

A	Different	Listener	Approach	

Nov	4,	2016	 Sprenkle	-	CSCI209	 52	

class ColoredBackgroundSelfListener extends JFrame
implements ActionListener {

 public ColoredBackgroundSelfListener	() {
 . . .

green.addActionListener(this);
blue.addActionListener(this);
red.addActionListener(this);

 }
 . . .

 public void actionPerformed(ActionEvent evt) {
// set background color
. . .

 }
}

Runs whenever any of the buttons is clicked.
What do we need to do in here?

11/4/16

27

A	Different	Listener	Approach	

• ColoredBackground’s	
actionPerformed	runs	whenever	any	of	the	
buNons	is	clicked	
Ø How	do	we	find	out	which	buNon	was	pressed?	

Nov	4,	2016	 Sprenkle	-	CSCI209	 53	

public void actionPerformed(ActionEvent evt) {
// gets the source that generates this event
Object source = evt.getSource();

if (source == green) . . .
else if (source == blue) . . .
else if (source == red) . . .

}
Why ==, not equals()?

Which	approach	is	beNer?	

Nov	4,	2016	 Sprenkle	-	CSCI209	 54	

11/4/16

28

Which	approach	is	beNer?	
•  Inner	class	approach	
makes	sense	from	an	
OOP	design	point	
Ø  Each	event	source	has	its	

own	listener,	which	can	
directly	modify	panel	as	it	
needs	

Ø  Separa&on	of	concerns	

•  Having	panel	itself	listen	
is	much	more	
straigh]orward	
Ø  Since	panel	needs	to	

change,	have	it	listen!	
Ø  But,	handling	method	

must	determine	event’s	
source	and	switch	its	
behavior	
•  Difficult	with	many	event	

sources	

Nov	4,	2016	 Sprenkle	-	CSCI209	 55	

Consider: How easy to add additional event sources for each case?
Responsibilities of the class?

Which	approach	is	beNer?	
• Neither	way	is	“beNer”	
• Consider	tradeoffs	and	decide	which	makes	more	
sense	for	your	class	

• While	inner	classes	may	be	confusing	at	first,	
they	are	useful		
Ø Great	benefits		
Ø We	will	tend	to	use	inner	class	listeners	

Nov	4,	2016	 Sprenkle	-	CSCI209	 56	

11/4/16

29

Simplifica&on	of	our	Event	Handlers	
• For	each	buNon,	we	do	four	things:	

1.  Construct	the	buNon	with	a	label	string	
2.  Add	the	buNon	to	the	panel	
3.  Construct	an	ac&on	listener	with	the	appropriate	

color	
4.  Register	that	listener	with	the	buNon	

Nov	4,	2016	 Sprenkle	-	CSCI209	 57	

What does that call for?

Simplifica&on	of	our	Event	Handlers	

• Makes	the	ColoredBackground
constructor	much	simpler…	

Nov	4,	2016	 Sprenkle	-	CSCI209	 58	

void makeButton(String label, Color backgroundColor) {
 JButton button = new JButton(label);
 getContentPane().add(button);
 ColorAction action = new ColorAction(backgroundColor);
 button.addActionListener(action);
}

public ColoredBackground() {
…
makeButton("Green", Color.green);
makeButton("Blue", Color.blue);
makeButton("Red", Color.red);

}

11/4/16

30

Simplifying	Further	

• We	only	use	the	ColorAction class	in	
makeButton method	
Ø We	can	further	simplify	the	code…	

Nov	4,	2016	 Sprenkle	-	CSCI209	 59	

void makeButton(String label, Color backgroundColor) {
 JButton button = new JButton(label);
 getContentPane().add(button);
 ColorAction action = new ColorAction(backgroundColor);
 button.addActionListener(action);
}

Simplifying	Further	
• Make	the	ColorAction class	an	
anonymous	inner	class	

• Since	only	use	class	at	one	point,		
define	class	on	the	fly	

Nov	4,	2016	 Sprenkle	-	CSCI209	 60	

11/4/16

31

An	Anonymous	Class	Listener	

Nov	4,	2016	 Sprenkle	-	CSCI209	 61	

void makeButton(String label, final Color bgColor) {
 JButton button = new JButton(label);
 getContentPane().add(button);

 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {

 getContentPane().setBackground(bgColor);
 }
});

}

Nov	4,	2016	 Sprenkle	-	CSCI209	 62	

Anonymous	Inner	Classes	
• Confusing	syntax!	
• Create	a	new	class	that	implements	
ActionListener interface	
Ø Define	required	method,	actionPerformed,	
inside	braces	

• Any	needed	parameters	are	inside	the	
parentheses,	following	the	supertype	name:	

new SuperType(construction parameters) {
inner class methods and data

}

11/4/16

32

Nov	4,	2016	 Sprenkle	-	CSCI209	 63	

Anonymous	Inner	Classes	

• Supertype can	be	an	interface	or	a	class	
Ø If	an	interface,	inner	class	implements	the	interface	
and	required	methods	

Ø If	a	class,	the	inner	class	extends	that	class	
• Anonymous	inner	classes	do	not	have	
constructors	
Ø Parameters	are	passed	to	superclass’s	constructor	
Ø If	inner	class	implements	an	interface,		
no	construc&on	parameters	

An	Anonymous	Class	Listener	

Nov	4,	2016	 Sprenkle	-	CSCI209	 64	

void makeButton(String label, final Color bgColor) {
 JButton button = new JButton(label);
 add(button);

 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {

 getContentPane().setBackground(bgColor);
 }
});

}

Interface
(no params)

Method required to be
implemented by interface

11/4/16

33

Nov	4,	2016	 Sprenkle	-	CSCI209	 65	

Anonymous	Inner	Classes	
• Differen&ate	between		

Ø Construc&on	of	a	new	object	of	a	class	
Ø Construc&on	of	an	object	of	an	anonymous	inner	
class	that	extends	that	class…	

// this is a Person object
Person queen = new Person("Mary");

// this is an object of an anonymous
// inner class extending the Person class
Person count = new Person("Dracula") {. . .};

Finale!	
• Show	different	versions	of	ColoredBackground	
GUI	

Nov	4,	2016	 Sprenkle	-	CSCI209	 66	

11/4/16

34

Compiler’s	Names	of	Classes	
• Contents	of	Eclipse	project’s	bin	directory	
examples:	

Nov	4,	2016	 Sprenkle	-	CSCI209	 67	

Some unusual names. Why?

Read	Others’	GUI	Code	
• CardLayoutDemo
• CardLayoutExample

• Lots	of	example	code	and	tutorials	available	
online	
Ø Find	something	similar	to	what	you	want	and	adapt	

Nov	4,	2016	 Sprenkle	-	CSCI209	 68	

11/4/16

35

Looking	Ahead	
• Assign	8	due	Monday	

Ø Should	have	implemented	much	of	the	refactoring	
Ø Extend	and	test	

• Exam	2	on	Wednesday	
Ø Document	posted	online	

Nov	4,	2016	 Sprenkle	-	CSCI209	 69	

