Objectives

GUIls in Java
» Event handling

Nov 4, 2016 Sprenkle - CSCI209

Assignment 8 Questions?

Nov 4, 2016 Sprenkle - CSCI209

Roulette Review

A capstone project for this part of the course
Bringing together:
Applying design principles
Testing
Non-deterministic

Need to understand these well to move to bigger
problems/code bases

Nov 4, 2016 Sprenkle - CSCI209 3

GUIS IN JAVA

Nov 4, 2016 Sprenkle - CSCI209 4

GUIs Review

What are the two packages used for GUI
development in Java?

What is a component vs what is a container?

What are some of the classes involved in GUI
programs?

Nov 4, 2016 Sprenkle - CSCI209

Java GUI Libraries: AWT & Swing

AWT: Abstract Windowing Toolkit
Original GUI toolkit
Relies on operating system to render GUIs

Benefit: Match look and feel of platform

Classes in java.awt. *

Swing: added to Java2
Classes in javax.swing. *
Extends AWT

Provides Java look and feel for applications
But can plug in other look & feels

Nov 4, 2016 Sprenkle - CSCI209

Swing & AWT

Swing does not completely replace AWT
Using the Swing graphics programming model
Improves performance
Allows more efficient development of GUIs

We will use Swing mostly
Leverage AWT

Nov 4, 2016 Sprenkle - CSCI209

Swing: Made up of Components

Top-level components
~Hold GUI elements

Examples: JFrame, JWindow, JDialog,
JApplet

GUI Elements
~Things user interacts with
Examples: JButton, JLabel, JMenuBar

Nov 4, 2016 Sprenkle - CSCI209

JFrame: key class

Class hierarchy

java.lang.Object
java.awt.Component
java.awt.Container
java.awt.Window
java.awt.Frame
javax.swing.JFrame

JFrame is derived from java.awt . Frame
»>Frame classis derived from Container class
Container: anything that can contain Ul components

» Lots of methods available from the hierarchy

Nov 4, 2016 Sprenkle - CSCI209 9

Components & Containers

java.lang.Object

java.awt.Component

Component java.awt.Container G
java._awt.Window
» Abstract class java.awt.Frame

javax.swing.JFrame

» Everything you see is a component
All nonmenu-related AWT components
» Many methods
Some deprecated: be careful
Container
> Concrete implementation of Component
» Base class of many classes

Nov 4, 2016 Sprenkle - CSCI209 10

Container Methods

java.lang.Object

java.awt.Component
add(Component c) ‘ ,-avaj:yat.;‘;’mnnzz -~
SetS-i_ zZe java.awt.Frame

javax.swing.JFrame

» Sets size of frame in pixels
setLocation
» Sets location of frame
Coordinates of top-left corner
setBounds

» Sets both size and location of frame

Provides information needed for setSize and
setlLocation

Nov 4, 2016 Sprenkle - CSCI209 11

° java.lang.Object
Win CIOW Methods java.awt.Component
java.awt.Container

. java._awt.Window D ——
TOp-|eve| WIndOW java.awt.Frame

javax.swing.JFrame

No borders

No Menu Bar

dispose()

» Closes window and reclaims resources associated

with it

toBack()

» Sends window to back, may lose focus/activation

toFront()

» Bring to front, make this the focused window

Nov 4, 2016 Sprenkle - CSCI209 12

java.lang.Object

F rlame’s MEthOdS java.awt.Component

java.awt.Container
java.awt.Window

java.awt.Frame <«

javax.swing.JFrame

Top-level window with title and borders
setTitle(String title)
Sets title of frame (displayed in title bar)

setResizable(boolean resizable)
Can the user resize the frame?

Nov 4, 2016 Sprenkle - CSCI209 13

Frame: Key Class

public class Game extends JFrame implements KeylListener {

public static void main(String[] args) {
Game session = new Game();
session.initQ);

}

public void init() {
// Top-left corner is (0,0)
// width/height: XBOUND, YBOUND
setBounds(@, @, XBOUND, YBOUND);
setTitle("Professor vs Goblin");
// Shows the window
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

vvvvvvvvvvvvvvvvv

Anatomy of an Application GUI

GUI Internal structure
EFrame 1 1S [=] B3 ‘ f
JFrame
JFemeL containers <
JButton
JLabel JButton | JLabel
Nov 4, 2016 Sprenkle - CSCI209 15

Implementing a GUI Component

Create it
Configure it

order
Add children (if container) important

Add to parent (if not JFrame)
Listen to it

Nov 4, 2016 Sprenkle - CSCI209 16

Implementing a GUI Component

Create it

JButton b = new JButton();
Configure it

b.setText("press me");
b.setForeground(Color.blue);
Add it to parent

panel.add(b);

Listen to it

» Events: Listeners

Nov 4, 2016 Sprenkle - CSCI209 17
Building a GUI
JFrame
Create (top down):
> Frame 1
‘ i Content
» Container | Pana
» Components Q S
\ . — ©
» Listeners ™ — : <
‘JLabel; JButton
Add (bottom up): B ' I
» Listeners into R E—
. Listener
components i !

» Components into panel

» Panel into frame

Nov 4, 2016 Sprenkle - CSCI209 18

® O @ title

Example Code

press me

// create the components

JFrame f = new JFrame("title");
f.setBounds(0, 0, 100, 100);
Container pane = f.getContentPane();

JFrame contains a ContentPane,
a Container that holds Ul components

JButton b = new JButton("press me");
// add button to panel

pane.add(b);

// show the frame
f.setVisible(true);

Nov 4, 2016 Sprenkle - CSCI209 19

Practice: Combining Components

Create a frame whose panel has three buttons
on it
What is our process?

ButtonPanel. java

Nov 4, 2016 Sprenkle - CSCI209 20

Placement of Components

How does the panel know where to place a
button?

How does the panel know where to place the
next button?

How does the panel know where to place any
component that is added to it?

Nov 4, 2016 Sprenkle - CSCI209

21

LAYOUT MANAGERS

Nov 4, 2016 Sprenkle - CSCI209

22

Layout Managers

Java uses Iayout managers to place components

inside a container

LayoutManager automatically handles
placement of components

When a component is added to a container (through
add), layout manager decides where to place the

component

Nov 4, 2016

Sprenkle - CSCI209

23

Layout Manager Heuristics
null FlowLayout GridLayout
e o W

programmer

sets X,y,w,h Top to bottom | [..i i
BorderlLayout CardLayout Gr‘iqugLayout

n N : ;

i c ® One at a time JButton
____________________ S

Default Layout Managers

JFrame’s content pane: BorderLayout
JPanel’s: FlowLayout

» Commonly used container

Nov 4, 2016 Sprenkle - CSCI209 25

Changing Layout Managers

Any container can use any layout manager

Use setLayout to change layout manager
before adding components

// sets layout to a new flow layout manager that

// aligns row components to the left and uses a 20 pixel
// horizontal separation and 20 pixel vertical separation
setLayout(new FlowLayout(FlowLayout.LEFT, 20, 20));

// sets layout to a new border layout manager that

// uses a 45 pixel horizontal separation between

// components (regions) and a 20 pixel vertical separation
setLayout(new BorderLayout(45, 20));

Nov 4, 2016 Sprenkle - CSCI209 26

Border Layout Manager

Default layout manager of the content pane for
JFrame

Lets you choose where you want to place each

component with respect to

North the container
Edge
components are
West Center East laid out first
Center occupies
remaining space
South

Nov 4, 2016 Sprenkle - CSCI209 27

Adding Components Using a Border
Layout

Container contentPane = getContentPane();
contentPane.add(button, BorderLayout.SOUTH);

If no region specified, assumes center region

What happens if we add multiple components,
e.g., three buttons, without specifying a region?

Recall: border layout grows component to fit
specified region

Nov 4, 2016 Sprenkle - CSCI209 28

A Border Layout Limitation

Three

Last button added grows to completely fill center
region
Explains our previous example!

First two buttons were discarded/overwritten by
each subsequently added component

Nov 4, 2016 Sprenkle - CSCI209 29

Combining Panels

Panels act as (smaller)
containers for Ul
elements

Can be arranged inside a
larger panel by a layout
manager
Use additional panels to
customize look JTextArea
Create a panel
Add some buttons to it

Add that panel to a region
in content pan

JButton || JButton

Nov 4, 2016 Sprenkle - CSCI209 30

Combining Panels

JButton JButton

JFrame
North— JPanel: FlowLayout
JPanel:
w, BorderLayout
\
Center B JTextArea
Nov 4, 2016 Sprenkle - CSCI209 31

Using Additional Panels

Get fairly accurate and precise placement of
components

Use nested panels with

Layout Use
BorderLayout Content panes and enclosing panels

Panels containing buttons and other Ul

Flow Layouts
components

FlexiblelLayout. java

Nov 4, 2016 Sprenkle - CSCI209 32

HANDLING USER INTERACTIONS

Nov 4, 2016 Sprenkle - CSCI209 33

Event-Driven Programming

User actions (e.g., mouse clicks, key presses),
sensor outputs, or messages from other
applications determine flow of program

Application architecture:

while (true) {
event = waitForEvent();

handleEvent(event);

Nov 4, 2016 Sprenkle - CSCI209 34

Event Basics

Source Listener

An event is generated from an event source and
is transmitted to an event listener

Event sources allow event listeners to register
with them

» Registered listener requests event source send its
event to listener when event occurs

Nov 4, 2016 Sprenkle - CSCI209 35

Java Event Handling

All events are objects of event classes
> Derive from java.util.EventObject
Event source

» Sends out event objects to all registered listeners
when that event occurs

Listener
» Implements a listener interface

> Uses EventObject to determine its reaction to
the event

Nov 4, 2016 Sprenkle - CSCI209 36

Java Event Handling

Register a listener with an event source:

eventSourceObject.addEventListener(
eventListenerObject);
Example:

ActionListener listener = . . .;
JButton button = new JButton("Click Me!");
button.addActionListener(listener);

Whenever an “action event” occurs on button,
listener is notified

For buttons, an action event is a button click

Nov 4, 2016 Sprenkle - CSCI209 37

Listener Objects

A listener object must be an instance of a class
that implements the appropriate interface

For buttons, that’s ActionListener
Listener class must implement

actionPerformed(ActionEvent
event)

Nov 4, 2016 Sprenkle - CSCI209 38

Listener Objects and Event Handling

When a user clicks a button, JButton object
generates an Act1onEvent object

Which makes JButton a what?

JButton calls listener object’s
actionPerformed method, passing
generated event object

A single event source can have multiple listeners
listening for its events

> Source calls actionPerformed on each of its
listeners

Nov 4, 2016 Sprenkle - CSCI209 39

An Example of Event Handling

Suppose we want to make a panel that has three
buttons on it
» Each button has a color associated with it

» When user clicks a button, background color of panel
changes to the corresponding color

We need
1. A panel with 3 buttons on it

2. 3 listener objects, each registered to listen for a
button’s events

Nov 4, 2016 Sprenkle - CSCI209 40

Event Handling Example

Make some buttons and add them to panel

public class ColoredBackground extends JFrame {
public ColoredBackground() {

Container cp = getContentPane();

JButton red = new JButton("Red");
red.setBackground(Color.RED);

JButton green = new JButton(”Green");
green.setBackground(Color.GREEN);
JButton blue = new JButton("Blue");
blue.setBackground(Color.BLUE);

cp.add(red);
cp.add(green);
cp.add(blue);

41

Listener Objects

We now need listeners for our buttons (event
sources)

An action listener can be any class that implements
the ActionListener interface

Make a new class that implements the interface

actionPerformed method should set the
background color of panel

Nov 4, 2016 Sprenkle - CSCI209 42

Our Listener Class: ColorAction

class ColorAction implements ActionListener {
private Color backgroundColor;
public ColorAction(Color c) {

backgroundColor = c;
}

public void actionPerformed(ActionEvent evtl) {
// set panel background color here
by

Nov 4, 2016 Sprenkle - CSCI209 43

Registering Our Listener Class

Create ActionListener objectsand
register them with the buttons...

ColorAction greenAction
ColorAction blueAction
ColorAction redAction

new ColorAction(Color.green);
new ColorAction(Color.blue);
new ColorAction(Color.red);

green.addActionListener(greenAction);
blue.addActionlListener(blueAction);
red.addActionListener(redAction);

t/These are JButtons

Nov 4, 2016 Sprenkle - CSCI209 44

Registering Our Listener Class

When a user clicks the green button, the
JButton generates an ActionEvent

Passes the ActionEvent object to
greenAction’s actionPerformed method

Method can then set frame’s background color

class ColorAction implements ActionListener {
private Color backgroundColor;
public ColorAction(Color c) {
backgroundColor = c;

public void actionPerformed(ActionEvent evtl) {
// set panel background color here

} C How can we implement this?

Nov ¢ } 45

The Listener Class & the Frame

ColorAction objects don’t have access to
the frame

How can they change the frame’s background color?

Possible solutions?

Nov 4, 2016 Sprenkle - CSCI209 46

The Listener Class & the Frame

ColorAction objects don’t have access to
the buttons

How can they change the background color?

Two possible solutions:
Add a frame instance field to ColorAction class
and set it in constructor

ColorAction object knows which frame it is
associated with and can call appropriate method to
change its background color

Make ColorAction aninner class

Nov 4, 2016 Sprenkle - CSCI209 47

Listener as an Inner Class

class ColoredBackground extends JFrame {
// ColoredBackground code ..
private class ColorAction implements ActionlListener {

private Color backgroundColor;
public void actionPerformed(ActionEvent evt) {

getContentPane().setBackground(backgroundColor)j

¥
¥

} Where is this

method coming
from?

Nov 4, 2016 Sprenkle - CSCI209 48

Close Up: actionPerformed|)

public void actionPerformed(ActionEvent evt) {
getContentPane().setBackground(backgroundColor);
ks

ColorAction does not have getContentPane()
method

Since ColorAction isaninner class of
ColoredBackground, ColorAction can directly

access ColoredBackground’s instance fields and
methods

Inner class calls outer class’s method
Parameter: inner’s private data (backgroundColor)

Nov 4, 2016 Sprenkle - CSCI209 49

Event Listeners as Inner Classes

A common and beneficial practice

Event listener objects typically need to access/
modify other objects when their corresponding
event occurs
It is often possible to place the listener class
inside the class whose state the listener should
modify
It's good OOP design

Doesn’t violate encapsulation rules

Makes code easier

Nov 4, 2016 Sprenkle - CSCI209 50

A Different Listener Approach

Any object of a class that implements
ActionlListener can listen for action events
from a source
Could make ColoredBackground listen for its
own buttons’ events
Implement interface and do correct registering with
the buttons

Nov 4, 2016 Sprenkle - CSCI209 51

A Different Listener Approach

class ColoredBackgroundSelfListener extends JFrame
implements ActionlListener {

public ColoredBackgroundSelfListener () {

éréeﬁ.addActionListener(this);
blue.addActionlListener(this);
red.addActionlListener(this);

}

public void actionPerformed(ActionEvent evt) {
// set background color

} o Runs whenever any of the buttons is clicked.
3 What do we need to do in here?

Nov 4, 2016 Sprenkle - CSCI209 52

A Different Listener Approach

ColoredBackground’s
actionPerformed runs whenever any of the
buttons is clicked

How do we find out which button was pressed?

public void actionPerformed(ActionEvent evt) {
// gets the source that generates this event
Object source = evt.getSource();

if (source == green) . . .
else if (source == blue) . . .
else if (source == red) . . .
3
Why ==, not equals()?
Nov 4, 2016 Sprenkle - CSCI209 53

Which approach is better?

Nov 4, 2016 Sprenkle - CSCI209 54

Which approach is better?

Inner class approach Having panel itself listen

makes sense from an is much more

OOP design point straightforward
Each event source has its Since panel needs to
own listener, which can change, have it listen!
directly modify panel as it But, handling method
needs must determine event’s
Separation of concerns source and switch its

behavior

Difficult with many event
sources

Consider: How easy to add additional event sources for each case?
Responsibilities of the class?

Nov 4, 2016 Sprenkle - CSCI209 55

Which approach is better?

Neither way is “better”
Consider tradeoffs and decide which makes more
sense for your class
While inner classes may be confusing at first,
they are useful

Great benefits

We will tend to use inner class listeners

Nov 4, 2016 Sprenkle - CSCI209 56

Simplification of our Event Handlers

For each button, we do four things:
Construct the button with a label string
Add the button to the panel

Construct an action listener with the appropriate
color

Register that listener with the button

What does that call for?

Nov 4, 2016 Sprenkle - CSCI209 57

Simplification of our Event Handlers

void makeButton(String label, Color backgroundColor) {
JButton button = new JButton(label);

getContentPane().add(button);
ColorAction action = new ColorAction(backgroundColor);

button.addActionListener(action);

}

Makes the ColoredBackground
constructor much simpler...
public ColoredBackground() {

HakeButton("Green", Color.green);
makeButton("Blue", Color.blue);
makeButton("Red", Color.red);

}

Nov 4, 2016 Sprenkle - CSCI209 58

Simplifying Further

void makeButton(String label, Color backgroundColor) {
JButton button = new JButton(label);
getContentPane().add(button);
ColorAction action = new ColorAction(backgroundColor);
button.addActionListener(action);

}

We only use the ColorAction classin
makeButton method

We can further simplify the code...

Nov 4, 2016 Sprenkle - CSCI209 59

Simplifying Further

Make the ColorAction class an
anonymous inner class

Since only use class at one point,
define class on the fly

Nov 4, 2016 Sprenkle - CSCI209 60

An Anonymous Class Listener

void makeButton(String label, final Color bgColor) {
JButton button = new JButton(label);
getContentPane().add(button);

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
getContentPane().setBackground(bgColor);
ks
[3D

Nov 4, 2016 Sprenkle - CSCI209 61

Anonymous Inner Classes

Confusing syntax!

Create a new class that implements
ActionlListener interface

Define required method, actionPerformed,
inside braces

Any needed parameters are inside the
parentheses, following the supertype name:

new SuperType(construction parameters) {
inner class methods and data
}

Nov 4, 2016 Sprenkle - CSCI209 62

Anonymous Inner Classes

Supertype can be an interface or a class

»If an interface, inner class implements the interface
and required methods

»~If a class, the inner class extends that class
Anonymous inner classes do not have
constructors

»Parameters are passed to superclass’s constructor

»If inner class implements an interface,
no construction parameters

Nov 4, 2016 Sprenkle - CSCI209 63

An Anonymous Class Listener

void makeButton(String label, final Color bgColor) {
JButton button = new JButton(label);

add(button); Interface

(no params)
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {
getContentPane().setBackground(bgColor);

})}: Method required to be

B implemented by interface

Nov 4, 2016 Sprenkle - CSCI209 64

Anonymous Inner Classes

Differentiate between
» Construction of a new object of a class

» Construction of an object of an anonymous inner
class that extends that class...

// this is a Person object
Person queen = new Person("Mary");

// this 1s an object of an anonymous

// inner class extending the Person class
Person count = new Person("Dracula"™) {. . .};

Nov 4, 2016 Sprenkle - CSCI209 65

Finale!

Show different versions of ColoredBackground
GUI

Nov 4, 2016 Sprenkle - CSCI209 66

Compiler’s Names of Classes

Contents of Eclipse project’s bin directory

examples:
sprenk le@spartacus exanples$ ls
ColorAction.class ColoredBackgroundRefactored$ColorAction,class
ColoredBackground$ColorAction,class ColoredBackgroundRefactored,class
ColoredBackground,class ColoredBackgroundSelflListener ,class
ColoredBackgroundZ2,.class Flexiblelayout.class
g ColoredBackgroundRefactored$l, class ThreeButtonsFrame,class

Some unusual names. Why?

Nov 4, 2016 Sprenkle - CSCI209 67

Read Others’ GUI Code

CardLayoutDemo
CardLayoutExample

Lots of example code and tutorials available
online
Find something similar to what you want and adapt

Nov 4, 2016 Sprenkle - CSCI209 68

Looking Ahead

Assign 8 due Monday
» Should have implemented much of the refactoring
» Extend and test

Exam 2 on Wednesday
» Document posted online

Nov 4, 2016 Sprenkle - CSCI209 69

