
11/7/16

1

Objec&ves	
• Event	handling		
• Design	Pa6erns	

Ø Composi&on	
Ø Strategy	

Nov	7,	2016	 Sprenkle	-	CSCI209	 1	

Review	
• What	are	the	main	packages	of	GUIs	in	Java?	
• What	are	some	of	the	components	of	Java?	
• What	are	layout	managers?	
• How	do	we	make	our	GUIs	handle	events?	

Nov	7,	2016	 Sprenkle	-	CSCI209	 2	

11/7/16

2

Review:	An	Anonymous	Class	Listener	

Nov	7,	2016	 Sprenkle	-	CSCI209	 3	

void makeButton(String label, final Color bgColor) {
 JButton button = new JButton(label);
 getContentPane().add(button);

 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {

 getContentPane().setBackground(bgColor);
 }
});

}

Nov	7,	2016	 Sprenkle	-	CSCI209	 4	

Anonymous	Inner	Classes	
• Confusing	syntax!	
• Create	a	new	class	that	implements	
ActionListener interface	
Ø Define	required	method,	actionPerformed,	
inside	braces	

• Any	needed	parameters	are	inside	the	
parentheses,	following	the	supertype	name:	

new SuperType(construction parameters) {
inner class methods and data

}

11/7/16

3

Nov	7,	2016	 Sprenkle	-	CSCI209	 5	

Anonymous	Inner	Classes	

• Supertype can	be	an	interface	or	a	class	
Ø If	an	interface,	inner	class	implements	the	interface	
and	required	methods	

Ø If	a	class,	the	inner	class	extends	that	class	
• Anonymous	inner	classes	do	not	have	
constructors	
Ø Parameters	are	passed	to	superclass’s	constructor	
Ø If	inner	class	implements	an	interface,		
no	construc&on	parameters	

An	Anonymous	Class	Listener	

Nov	7,	2016	 Sprenkle	-	CSCI209	 6	

void makeButton(String label, final Color bgColor) {
 JButton button = new JButton(label);
 add(button);

 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {

 getContentPane().setBackground(bgColor);
 }
});

}

Interface
(no params)

Method required to be
implemented by interface

11/7/16

4

Nov	7,	2016	 Sprenkle	-	CSCI209	 7	

Anonymous	Inner	Classes	
• Differen&ate	between		

Ø Construc&on	of	a	new	object	of	a	class	
Ø Construc&on	of	an	object	of	an	anonymous	inner	
class	that	extends	that	class…	

// this is a Person object
Person queen = new Person("Mary");

// this is an object of an anonymous
// inner class extending the Person class
Person count = new Person("Dracula") {. . .};

Compiler’s	Names	of	Classes	
• Contents	of	Eclipse	project’s	bin	directory	
examples:	

Nov	7,	2016	 Sprenkle	-	CSCI209	 8	

Some unusual names. Why?

11/7/16

5

Read	Others’	GUI	Code	
• CardLayoutDemo
• CardLayoutExample

• Lots	of	example	code	and	tutorials	available	
online	
Ø Find	something	similar	to	what	you	want	and	adapt	

Nov	7,	2016	 Sprenkle	-	CSCI209	 9	

EVENT	HANDLING	
Other	types	of	events	

Nov	7,	2016	 Sprenkle	-	CSCI209	 10	

11/7/16

6

The	WindowListener Interface	
• Contains	7	methods	

Ø One	for	each	type	of	window	event	
Ø A	class	that	implements	WindowListener must	
implement	all	7	methods	

Nov	7,	2016	 Sprenkle	-	CSCI209	 11	

public interface WindowListener {
void windowOpened(WindowEvent e);
void windowClosing(WindowEvent e);
void windowClosed(WindowEvent e);
void windowIconified(WindowEvent e);
void windowDeiconified(WindowEvent e);
void windowActivated(WindowEvent e);
void windowDeactivated(WindowEvent e);

}

Example:	Implemen&ng	a	
WindowListener

Nov	7,	2016	 Sprenkle	-	CSCI209	 12	

class Terminator implements WindowListener {
public void windowClosing(WindowEvent evt) {

System.exit(0);
}

public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

}

What does this class do?

11/7/16

7

Example:	Implemen&ng	a	
WindowListener
• Listens	for	window	events	on	a	frame	and	ends	
the	program	when	the	frame	is	closing	

Nov	7,	2016	 Sprenkle	-	CSCI209	 13	

class Terminator implements WindowListener {
public void windowClosing(WindowEvent evt) {

System.exit(0);
}

public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

}
For	JFrames use	setDefaultClosedOperation

Adapter	Classes	
• Most	AWT	listener	interfaces	have	a	
corresponding	adapter	class	
Ø Implements	each	of	interface’s	methods	but	does	
nothing	inside	each	

Ø No	adapter	classes	for	AWT	interfaces	with	only	one	
method	(such	as	ActionListener)	

Nov	7,	2016	 Sprenkle	-	CSCI209	 14	

11/7/16

8

Adapter	Classes	
•  If	you	want	a	WindowListener class	that	
does	nothing	with	most	window	events	
Ø Create	a	new	class	that	extends
WindowAdapter and	override	relevant	method(s)	

• When	is	extending	a	class	a	problem?	
Ø How	big	of	a	concern	is	that	for	this	specific	case/
type	of	class?	

Nov	7,	2016	 Sprenkle	-	CSCI209	 15	

Extending	an	Adapter	Class	
• Redefine	Terminator in	much	less	code…	

Nov	7,	2016	 Sprenkle	-	CSCI209	 16	

class Terminator extends WindowAdapter {
public void windowClosing(WindowEvent evt) {

System.exit(0);
}
// all other methods are the same as in
// WindowAdapter—all do nothing.

}

11/7/16

9

Registering	a	WindowListener
• Register	Terminator to	listen	for	window	
events	
Ø Assuming	that	our	“main”	window	frame	is	named	
frame	

• Result:	if	frame is	closed,	the	program	should	
exit	

Nov	7,	2016	 Sprenkle	-	CSCI209	 17	

WindowListener listener = new Terminator();
frame.addWindowListener(listener);

Alterna&ve:	Registering	a	
WindowListener

Nov	7,	2016	 Sprenkle	-	CSCI209	 18	

frame.addWindowListener(new
WindowAdapter() {

public void windowClosing(WindowEvent evt) {
System.exit(0);

}
});

What is going on in this code?

11/7/16

10

Anonymous	Inner	Class	

Nov	7,	2016	 Sprenkle	-	CSCI209	 19	

frame.addWindowListener(new
WindowAdapter() {

public void windowClosing(WindowEvent evt) {
System.exit(0);

}
});

• Defines	a	new	anonymous	class	that	extends	
WindowAdapter class	

• Adds	windowClosing method	to	anonymous	class	
• Inherits	other	6	methods	from	WindowAdapter
• Creates	an	object	of	this	new	class	

Ø Object	also	does	not	have	a	name	
• Passes	new	no-name	object	to	addWindowListener
method	of	frame

TYPES	OF	EVENTS	

Nov	7,	2016	 Sprenkle	-	CSCI209	 20	

11/7/16

11

AWT	Event	Hierarchy	
• 10	different	types	of	events	in	AWT	

Ø Seman&c	events	
Ø Low-level	events	

• Example:		
Ø Adjus&ng	a	scrollbar	is	a	seman.c	event	
Ø Made	possible	by	low-level	events,	such	as	dragging	
the	mouse	

Nov	7,	2016	 Sprenkle	-	CSCI209	 21	

Rule of thumb: low-level events cause
semantic events to happen

AWT	Event	Listeners	
• 11	Event	Listener	Interfaces	

Ø ActionListener, AdjustmentListener,
ItemListener, TextListener,
ComponentListener, ContainerListener,
FocusListener, KeyListener,
MouseListener, MouseMotionListener, and
WindowListener

• See	API	for	interfaces	and	their	methods	
• Each	listener	interface	with	>	1	method	has	a	
corresponding	adapter	class	
Ø  Implements	interface	with	all	empty	methods	

Nov	7,	2016	 Sprenkle	-	CSCI209	 22	

11/7/16

12

Game.java	

Nov	7,	2016	 Sprenkle	-	CSCI209	 23	

public class Game extends JFrame implements  
KeyListener {

DESIGN	PATTERNS	

Nov	7,	2016	 Sprenkle	-	CSCI209	 24	

11/7/16

13

Design	Pa6ern	

• Not	a	finished	design	that	can	be	transformed	
directly	into	code	

• Descrip&on	or	template	for	how	to	solve	a	
problem	that	can	be	used	in	many	different	
situa&ons	
Ø “Experience	reuse”	rather	than	code	reuse	

Nov	7,	2016	 Sprenkle	-	CSCI209	 25	

General reusable solution to a commonly
occurring problem in software design

Defined	Design	Pa6erns	
• Sokware	best	prac&ces	
• Catalogued	and	discussed	in		
Design	Pa3erns:	Elements	of	Reusable	Object-
Oriented	So?ware		
Ø Wri6en	by	the	“Gang	of	Four”:		
Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	
Vlissides	
• Erich	Gamma	also	co-wrote	JUnit	framework	

Ø Didn’t	design	the	pa6erns;	iden&fied	them	

Nov	7,	2016	 Sprenkle	-	CSCI209	 26	

11/7/16

14

Understanding	Code	
1.  Recognize	design	pa6ern	in	code	base	you’re	

using	
2. Understand	code	design	be6er	

Nov	7,	2016	 Sprenkle	-	CSCI209	 27	

Applying	Design	Pa6erns	
1.  Recognize	problem	as	one	that	can	be	solved	by	

a	design	pa6ern	
2.  Apply	pa6ern	to	your	problem	

Nov	7,	2016	 Sprenkle	-	CSCI209	 28	

Danger: over-applying design patterns
Ø  Fall back: Identify and resolve code smells

11/7/16

15

Audubon	Society	calls…	
• Birds	

Ø Various	flying	behaviors	(some	fly,	some	don’t)	
Ø Make	different	sounds	
Ø Examples:	Duck,	Penguin,	Hummingbird,	Ostrich,	
Chicken,	Oriole,	…	

Nov	7,	2016	 Sprenkle	-	CSCI209	 29	

How can we represent different birds?

Designing	Flexible	Behaviors	
•  Include	behaviors	in	abstract	Bird	class	

Ø FlyBehavior object has performFly()	
method	

Ø SoundBehavior	object	has	makeSound()	
method	

• Could	have	se6er	methods	in	Bird	class	to	
change	these	
Ø Example:	bird’s	wings	get	clipped	

Nov	7,	2016	 Sprenkle	-	CSCI209	 30	

11/7/16

16

Designing	Flexible	Behaviors	

Nov	7,	2016	 Sprenkle	-	CSCI209	 31	

public abstract class Bird {
protected FlyBehavior flyB;
protected SoundBehavior soundB;

public Bird() {
…

}

public void performSound() {
soundB.makeSound();

}

public void performFly() {
flyB.performFly();

}
}

Designing	Flexible	Behaviors	

Nov	7,	2016	 Sprenkle	-	CSCI209	 32	

public class Duck extends Bird {
//Recall: protected FlyBehavior flyB;
//Recall: protected SoundBehavior soundB;

public Duck() {

}
…

}

What do we need to
do in here?

11/7/16

17

Designing	Flexible	Behaviors	

Nov	7,	2016	 Sprenkle	-	CSCI209	 33	

public class Duck extends Bird {

public Duck() {
flyB = new FlyHighBehavior();
soundB = new QuackBehavior();

}

} Do we need to do anything else to this class,
with respect to fly and sound behavior?

How	Do	We	Implement…	
• Hummingbird?	
• Penguin?	
• Ostrich?	

Nov	7,	2016	 Sprenkle	-	CSCI209	 34	

11/7/16

18

Class	Diagram	

Nov	7,	2016	 Sprenkle	-	CSCI209	 35	

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

asso
ciati

on

Unified	Modeling	Language	(UML)	
• Standardized	general-purpose	modeling	
language	
Ø Graphical	language	for	visualizing,	specifying	and	
construc&ng	the	ar&facts	of	a	sokware	system		

•  Includes	a	set	of	graphical	nota&on	techniques	to	
create	abstract	models	of	specific	systems	

• Used	in	designing	a	large	system	
Ø Focus	on	big	picture,	not	the	code	

Nov	7,	2016	 Sprenkle	-	CSCI209	 36	

11/7/16

19

• Composi&on	
Ø Using	other	objects	in	your	class	
Ø “Delegate”	responsibili&es	to	this	object	

	

Nov	7,	2016	 Sprenkle	-	CSCI209	 37	

Why is composition preferred over inheritance?

Design Principle:�
Favor Composition Over Inheritance

Design Principle:�
Favor Composition Over Inheritance
• Composi&on	

Ø Using	other	objects	in	your	class	
Ø “Delegate”	responsibili&es	to	this	object	

	
Ø Inheritance	à	dependence	on	parent	class	

• Only	want	to	depend	on	things	you	know	won’t	
change	(higher	stability)	

Ø Composi&on:	Provide	different	behaviors	for	your	
class	by	plugging	in	new	object	

Nov	7,	2016	 Sprenkle	-	CSCI209	 38	

Why is composition preferred over inheritance?

11/7/16

20

Another	Solu&on:	Using	Interfaces	
• We	could	have	a	Flyable interface	with	a
performFly() method and	a		Chirpable	
interface	with	a	chirp()	method	

• Then,	each	Bird	class	would	implement	
Flyable	and	Chirpable,	as	appropriate	

Nov	7,	2016	 Sprenkle	-	CSCI209	 39	

Pros and cons of this solution?

Pros	and	Cons	of	Interface	Solu&on	
• We	could	have	a	Flyable interface	with	a
performFly() method and	a		Chirpable	
interface	with	a	chirp()	method	

• Pros:	Using	an	interface	à	more	flexible	
Ø Depending	on	interface	instead	of	implementa&on	

• Con:	Duplicated	code,	implement	in	each	class	

Nov	7,	2016	 Sprenkle	-	CSCI209	 40	

11/7/16

21

Strategy	Pa6ern	

Nov	7,	2016	 Sprenkle	-	CSCI209	 41	

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

Strategies

asso
ciati

on

Design	Pa6ern:	Strategy	
• Defines	a	family	of	algorithms,	encapsulates	each	
one,	and	makes	them	interchangeable	

• Lets	algorithm/behavior	vary	independently	from	
clients	that	use	it	
Ø Allows	behavior	changes	at	run&me	

• Design	Principle:	

Nov	7,	2016	 Sprenkle	-	CSCI209	 42	

Favor composition over inheritance

11/7/16

22

Strategy	Pa6ern	

Nov	7,	2016	 Sprenkle	-	CSCI209	 43	

Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

Strategies

asso
ciati

on

What are the benefits of the Strategy Pattern?
Have we seen it in use before?

What	Are	the	Benefits	of	the	Strategy	
Pa6ern?	
• Uses	delegaBon	

Ø Reduces	Bird’s	responsibili&es	
• Delegate	some	responsibili&es	to	SoundBehavior	
and	FlyBehavior

Ø Reduces	Bird’s	code	
• Easy	swap	of	different	strategy	

Ø Because	have	one	interface,	can	easily	plug	in	
different	behavior/implementa&on	
• Coding	to	interface,	not	implementa&on	

• Adheres	to	open-closed	principle	
Nov	7,	2016	 Sprenkle	-	CSCI209	 44	

Pattern in its own right

11/7/16

23

Discussion:	Applying	Design	Pa6erns	
• When	should	we	apply	the	delegaBon	pa6ern?	

Ø Example,	if	X,	then	we	should	apply	the	pa6ern.	

• When	should	we	apply	the	strategy	pa6ern?	

• When	will	we	know	we’ve	gone	too	far	
(overapplying)?	
Ø What	are	some	symptoms	to	look	for?	

Nov	7,	2016	 Sprenkle	-	CSCI209	 45	

Discussion:	Applying	Design	Pa6erns	
• When	should	we	apply	the	delegaBon	pa6ern?	

Ø When	we	know	that	the	requirements	or	implementa&ons	for	
a	responsibility	are	likely	to	change	
•  Change:	Number/types	of	birds;	types	of	behaviors;	or	lower-

level	implementa&on	details	

• When	should	we	apply	the	strategy	pa6ern?	
Ø When	there	are	lots	of	desired	behaviors	for	one	

responsibility	
• When	will	we	know	we’ve	gone	too	far	(overapplying)?		
What	are	some	symptoms	to	look	for?	
Ø  “Too	small”	classes	à	don’t	do	anything	
Ø Have	many	more	strategies	than	necessary	
Ø  “Specula&ve	generality”	

Nov	7,	2016	 Sprenkle	-	CSCI209	 46	

11/7/16

24

Midterm	Prep	
•  Java	

Ø Streams	
Ø Comparison	with	Python	
Ø Jar	files	

• Sokware	Development	
Ø Models	
Ø Tes&ng	
Ø Design	Principles	
Ø Code	smells	
Ø Refactoring	

• GUI	programming	
Ø Event	handling,	inner	classes	

Nov	7,	2016	 Sprenkle	-	CSCI209	 47	

Document posted online

Little programming,
More code understanding

Emphasis: theory
Assignments: implementation

TODO	
• Exam	2	Wednesday	
• Nov	18	before	class:	Extra	Credit	Deadline	

Nov	7,	2016	 Sprenkle	-	CSCI209	 48	

