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Objec&ves	
• Event	handling		
• Design	Pa6erns	

Ø Composi&on	
Ø Strategy	
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Review	
• What	are	the	main	packages	of	GUIs	in	Java?	
• What	are	some	of	the	components	of	Java?	
• What	are	layout	managers?	
• How	do	we	make	our	GUIs	handle	events?	
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Review:	An	Anonymous	Class	Listener	
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void makeButton(String label, final Color bgColor) {
  JButton button = new JButton(label);
  getContentPane().add(button);

  button.addActionListener( new ActionListener() {
   public void actionPerformed(ActionEvent evt) {

   getContentPane().setBackground(bgColor);
   }
} );

}
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Anonymous	Inner	Classes	
• Confusing	syntax!	
• Create	a	new	class	that	implements	
ActionListener interface	
Ø Define	required	method,	actionPerformed,	
inside	braces	

• Any	needed	parameters	are	inside	the	
parentheses,	following	the	supertype	name:	

new SuperType(construction parameters) {
inner class methods and data

}
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Anonymous	Inner	Classes	

• Supertype can	be	an	interface	or	a	class	
Ø If	an	interface,	inner	class	implements	the	interface	
and	required	methods	

Ø If	a	class,	the	inner	class	extends	that	class	
• Anonymous	inner	classes	do	not	have	
constructors	
Ø Parameters	are	passed	to	superclass’s	constructor	
Ø If	inner	class	implements	an	interface,		
no	construc&on	parameters	

An	Anonymous	Class	Listener	
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void makeButton(String label, final Color bgColor) {
  JButton button = new JButton(label);
  add(button);

  button.addActionListener( new ActionListener() {
   public void actionPerformed(ActionEvent evt) {

   getContentPane().setBackground(bgColor);
   }
} );

}

Interface
(no params)

Method required to be 
implemented by interface
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Anonymous	Inner	Classes	
• Differen&ate	between		

Ø Construc&on	of	a	new	object	of	a	class	
Ø Construc&on	of	an	object	of	an	anonymous	inner	
class	that	extends	that	class…	

// this is a Person object
Person queen = new Person("Mary");

// this is an object of an anonymous
// inner class extending the Person class
Person count = new Person("Dracula") {. . .};

Compiler’s	Names	of	Classes	
• Contents	of	Eclipse	project’s	bin	directory	
examples:	
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Some unusual names.  Why?
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Read	Others’	GUI	Code	
• CardLayoutDemo
• CardLayoutExample

• Lots	of	example	code	and	tutorials	available	
online	
Ø Find	something	similar	to	what	you	want	and	adapt	
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EVENT	HANDLING	
Other	types	of	events	
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The	WindowListener Interface	
• Contains	7	methods	

Ø One	for	each	type	of	window	event	
Ø A	class	that	implements	WindowListener must	
implement	all	7	methods	
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public interface WindowListener {
void windowOpened(WindowEvent e);
void windowClosing(WindowEvent e);
void windowClosed(WindowEvent e);
void windowIconified(WindowEvent e);
void windowDeiconified(WindowEvent e);
void windowActivated(WindowEvent e);
void windowDeactivated(WindowEvent e);

}

Example:	Implemen&ng	a	
WindowListener
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class Terminator implements WindowListener {
public void windowClosing(WindowEvent evt) {

System.exit(0);
}

public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

}

What does this class do?
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Example:	Implemen&ng	a	
WindowListener
• Listens	for	window	events	on	a	frame	and	ends	
the	program	when	the	frame	is	closing	
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class Terminator implements WindowListener {
public void windowClosing(WindowEvent evt) {

System.exit(0);
}

public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

}
For	JFrames use	setDefaultClosedOperation

Adapter	Classes	
• Most	AWT	listener	interfaces	have	a	
corresponding	adapter	class	
Ø Implements	each	of	interface’s	methods	but	does	
nothing	inside	each	

Ø No	adapter	classes	for	AWT	interfaces	with	only	one	
method	(such	as	ActionListener)	
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Adapter	Classes	
•  If	you	want	a	WindowListener class	that	
does	nothing	with	most	window	events	
Ø Create	a	new	class	that	extends 
WindowAdapter and	override	relevant	method(s)	

• When	is	extending	a	class	a	problem?	
Ø How	big	of	a	concern	is	that	for	this	specific	case/
type	of	class?	
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Extending	an	Adapter	Class	
• Redefine	Terminator in	much	less	code…	

Nov	7,	2016	 Sprenkle	-	CSCI209	 16	

class Terminator extends WindowAdapter {
public void windowClosing(WindowEvent evt) {

System.exit(0);
}
// all other methods are the same as in 
// WindowAdapter—all do nothing.

}
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Registering	a	WindowListener
• Register	Terminator to	listen	for	window	
events	
Ø Assuming	that	our	“main”	window	frame	is	named	
frame	

• Result:	if	frame is	closed,	the	program	should	
exit	
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WindowListener listener = new Terminator();
frame.addWindowListener(listener);

Alterna&ve:	Registering	a	
WindowListener 
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frame.addWindowListener( new
WindowAdapter() {

public void windowClosing(WindowEvent evt) {
System.exit(0);

}
} );

What is going on in this code?
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Anonymous	Inner	Class	

Nov	7,	2016	 Sprenkle	-	CSCI209	 19	

frame.addWindowListener( new
WindowAdapter() {

public void windowClosing(WindowEvent evt) {
System.exit(0);

}
} );

• Defines	a	new	anonymous	class	that	extends	
WindowAdapter class	

• Adds	windowClosing method	to	anonymous	class	
• Inherits	other	6	methods	from	WindowAdapter
• Creates	an	object	of	this	new	class	

Ø Object	also	does	not	have	a	name	
• Passes	new	no-name	object	to	addWindowListener 
method	of	frame

TYPES	OF	EVENTS	
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AWT	Event	Hierarchy	
• 10	different	types	of	events	in	AWT	

Ø Seman&c	events	
Ø Low-level	events	

• Example:		
Ø Adjus&ng	a	scrollbar	is	a	seman.c	event	
Ø Made	possible	by	low-level	events,	such	as	dragging	
the	mouse	
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Rule of thumb: low-level events cause
semantic events to happen

AWT	Event	Listeners	
• 11	Event	Listener	Interfaces	

Ø ActionListener, AdjustmentListener, 
ItemListener, TextListener, 
ComponentListener, ContainerListener, 
FocusListener, KeyListener, 
MouseListener, MouseMotionListener, and 
WindowListener

• See	API	for	interfaces	and	their	methods	
• Each	listener	interface	with	>	1	method	has	a	
corresponding	adapter	class	
Ø  Implements	interface	with	all	empty	methods	
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Game.java	
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public class Game extends JFrame implements  
KeyListener {

DESIGN	PATTERNS	
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Design	Pa6ern	

• Not	a	finished	design	that	can	be	transformed	
directly	into	code	

• Descrip&on	or	template	for	how	to	solve	a	
problem	that	can	be	used	in	many	different	
situa&ons	
Ø “Experience	reuse”	rather	than	code	reuse	

Nov	7,	2016	 Sprenkle	-	CSCI209	 25	

General reusable solution to a commonly 
occurring problem in software design

Defined	Design	Pa6erns	
• Sokware	best	prac&ces	
• Catalogued	and	discussed	in		
Design	Pa3erns:	Elements	of	Reusable	Object-
Oriented	So?ware		
Ø Wri6en	by	the	“Gang	of	Four”:		
Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	
Vlissides	
• Erich	Gamma	also	co-wrote	JUnit	framework	

Ø Didn’t	design	the	pa6erns;	iden&fied	them	
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Understanding	Code	
1.  Recognize	design	pa6ern	in	code	base	you’re	

using	
2. Understand	code	design	be6er	
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Applying	Design	Pa6erns	
1.  Recognize	problem	as	one	that	can	be	solved	by	

a	design	pa6ern	
2.  Apply	pa6ern	to	your	problem	
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Danger: over-applying design patterns
Ø  Fall back: Identify and resolve code smells
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Audubon	Society	calls…	
• Birds	

Ø Various	flying	behaviors	(some	fly,	some	don’t)	
Ø Make	different	sounds	
Ø Examples:	Duck,	Penguin,	Hummingbird,	Ostrich,	
Chicken,	Oriole,	…	
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How can we represent different birds?

Designing	Flexible	Behaviors	
•  Include	behaviors	in	abstract	Bird	class	

Ø FlyBehavior object has performFly()	
method	

Ø SoundBehavior	object	has	makeSound()	
method	

• Could	have	se6er	methods	in	Bird	class	to	
change	these	
Ø Example:	bird’s	wings	get	clipped	
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Designing	Flexible	Behaviors	
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public abstract class Bird {
protected FlyBehavior flyB;
protected SoundBehavior soundB;

public Bird() {
…

}

public void performSound() {
soundB.makeSound();

}

public void performFly() {
flyB.performFly();

} 
} 

Designing	Flexible	Behaviors	
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public class Duck extends Bird {
//Recall: protected FlyBehavior flyB;
//Recall: protected SoundBehavior soundB;

public Duck() {

}
…

} 

What do we need to 
do in here?
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Designing	Flexible	Behaviors	
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public class Duck extends Bird {

public Duck() {
flyB = new FlyHighBehavior();
soundB = new QuackBehavior();

}

} Do we need to do anything else to this class, 
with respect to fly and sound behavior? 

How	Do	We	Implement…	
• Hummingbird?	
• Penguin?	
• Ostrich?	
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Class	Diagram	
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Bird
FlyBehavior

SoundBehavior
performSound()
performFly()

Duck

UML Diagram

NoFly
performFly()

FlyBehavior
performFly()

FlyHigh
performFly()

SoundBehavior
makeSound()

interface

(Implementations of interface …)

interface

asso
ciati

on

Unified	Modeling	Language	(UML)	
• Standardized	general-purpose	modeling	
language	
Ø Graphical	language	for	visualizing,	specifying	and	
construc&ng	the	ar&facts	of	a	sokware	system		

•  Includes	a	set	of	graphical	nota&on	techniques	to	
create	abstract	models	of	specific	systems	

• Used	in	designing	a	large	system	
Ø Focus	on	big	picture,	not	the	code	
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• Composi&on	
Ø Using	other	objects	in	your	class	
Ø “Delegate”	responsibili&es	to	this	object	
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Why is composition preferred over inheritance?

Design Principle:�
Favor Composition Over Inheritance

Design Principle:�
Favor Composition Over Inheritance
• Composi&on	

Ø Using	other	objects	in	your	class	
Ø “Delegate”	responsibili&es	to	this	object	

	
Ø Inheritance	à	dependence	on	parent	class	

• Only	want	to	depend	on	things	you	know	won’t	
change	(higher	stability)	

Ø Composi&on:	Provide	different	behaviors	for	your	
class	by	plugging	in	new	object	
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Why is composition preferred over inheritance?
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Another	Solu&on:	Using	Interfaces	
• We	could	have	a	Flyable interface	with	a 
performFly() method and	a		Chirpable	
interface	with	a	chirp()	method	

• Then,	each	Bird	class	would	implement	
Flyable	and	Chirpable,	as	appropriate	
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Pros and cons of this solution?

Pros	and	Cons	of	Interface	Solu&on	
• We	could	have	a	Flyable interface	with	a 
performFly() method and	a		Chirpable	
interface	with	a	chirp()	method	

• Pros:	Using	an	interface	à	more	flexible	
Ø Depending	on	interface	instead	of	implementa&on	

• Con:	Duplicated	code,	implement	in	each	class	
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Strategy	Pa6ern	
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Design	Pa6ern:	Strategy	
• Defines	a	family	of	algorithms,	encapsulates	each	
one,	and	makes	them	interchangeable	

• Lets	algorithm/behavior	vary	independently	from	
clients	that	use	it	
Ø Allows	behavior	changes	at	run&me	

• Design	Principle:	
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Favor composition over inheritance
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Strategy	Pa6ern	
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What are the benefits of the Strategy Pattern?
Have we seen it in use before?

What	Are	the	Benefits	of	the	Strategy	
Pa6ern?	
• Uses	delegaBon	

Ø Reduces	Bird’s	responsibili&es	
• Delegate	some	responsibili&es	to	SoundBehavior	
and	FlyBehavior

Ø Reduces	Bird’s	code	
• Easy	swap	of	different	strategy	

Ø Because	have	one	interface,	can	easily	plug	in	
different	behavior/implementa&on	
• Coding	to	interface,	not	implementa&on	

• Adheres	to	open-closed	principle	
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Pattern in its own right
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Discussion:	Applying	Design	Pa6erns	
• When	should	we	apply	the	delegaBon	pa6ern?	

Ø Example,	if	X,	then	we	should	apply	the	pa6ern.	

• When	should	we	apply	the	strategy	pa6ern?	

• When	will	we	know	we’ve	gone	too	far	
(overapplying)?	
Ø What	are	some	symptoms	to	look	for?	
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Discussion:	Applying	Design	Pa6erns	
• When	should	we	apply	the	delegaBon	pa6ern?	

Ø When	we	know	that	the	requirements	or	implementa&ons	for	
a	responsibility	are	likely	to	change	
•  Change:	Number/types	of	birds;	types	of	behaviors;	or	lower-

level	implementa&on	details	

• When	should	we	apply	the	strategy	pa6ern?	
Ø When	there	are	lots	of	desired	behaviors	for	one	

responsibility	
• When	will	we	know	we’ve	gone	too	far	(overapplying)?		
What	are	some	symptoms	to	look	for?	
Ø  “Too	small”	classes	à	don’t	do	anything	
Ø Have	many	more	strategies	than	necessary	
Ø  “Specula&ve	generality”	
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Midterm	Prep	
•  Java	

Ø Streams	
Ø Comparison	with	Python	
Ø Jar	files	

• Sokware	Development	
Ø Models	
Ø Tes&ng	
Ø Design	Principles	
Ø Code	smells	
Ø Refactoring	

• GUI	programming	
Ø Event	handling,	inner	classes	
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Document posted online

Little programming,
More code understanding

Emphasis: theory
Assignments: implementation

TODO	
• Exam	2	Wednesday	
• Nov	18	before	class:	Extra	Credit	Deadline	
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