Objectives

Design Patterns
Observer
MVC

Dependency Inversion Principle
Factory design pattern
Screensavers

Nov 11, 2016 Sprenkle - CSCI209 1

Review

What is a design pattern?

What design patterns did we discuss?
What design principle(s) does it follow?

Why do we prefer composition over inheritance?
Any underlying commonalities?

Nov 11, 2016 Sprenkle - CSCI209 2

Design Pattern: Observer

Defines a 1-to-many dependency between
objects

When one object changes state, all of its
dependents are notified and updated
automatically

Automatic update/

% Object
Subject 2| Object

Object that | Object
holds state Dependent Objects
Ex: Publisher Ex: Subscribers

Nov 11, 2016 Sprenkle - CSCI209 3

Have we seen this pattern?

Observer Pattern

Subject ——> Observer
registerObserver() association update()
removeObserver()
notifyObservers() implementation

implementation? association
ConcreteSubject (€ ConcreteObserver
registerObserver() update()
removeObserver() //observer-specific
notifyObservers() //methods
getState()
setState()

Nov 11, 2016 Sprenkle - CSCI209 4

Design Principle: Loose Coupling
A principle behind Observer pattern

Goal: loosely coupled designs
between objects that interact

Loosely coupled objects can interact but have
very little knowledge of each other

Minimize dependency between objects

More flexible systems

Handle change

Nov 11, 2016 Sprenkle - CSCI209

MVC DESIGN PATTERN

Nov 11, 2016 Sprenkle - CSCI209

Model - Viewer - Controller (MVC)

A common design pattern for GUIs

Separate
» Model: application data
» View: graphical representation
» Controller: input processing

. — .
Modifies Notifies
Model

Nov 11, 2016 Sprenkle - CSCI209 7

Model-Viewer-Controller

. — .
Modifies Notifies
Model

Can have multiple viewers and controllers

Goal: modify one component without affecting
others

[Controller]

Direct associations

| Model |&—{ view |

Nov 11, 2016 Sprenkle - CSCI209 8

—
MOdEI -
Model

Code that carries out some task
Nothing about how view presented to user
Purely functional

Must be able to register views and notify views
of changes

Nov 11, 2016 Sprenkle - CSCI209 9

Multiple Views

Provides GUI interface components of
model

» Look & Feel of the application

User manipulates view
» Informs controller of change

Example of multiple views: ——— |

spreadsheetdata @ ——--=-=

» Rows/columns in spreadsheet —n
> Pie chart, bar chart, ... E

Nov 11, 2016 Sprenkle - CSCI209 L’/ 10

Controller(s)

Controller

Takes user input and figures out what it means
to the model

» Makes decisions about behavior of model based on
Ul

Update model as user interacts with view
» Calls model’s mutator methods

Views are associated with controllers

Nov 11, 2016 Sprenkle - CSCI209 11

Example: Music Player

User e Use interface
¢ Actions go to controller

Display is updated

“Play new song”

* See the song display
update

* Hear new song playing

View Controller

Controller asks Player modegl to
begin playing song

Model Controller
Model tells class Player- manlpulates
view that state play(model
has changed ri p() Contains state, data,
Nov 11, 2016 expo r‘t() application logic 12

MVC: Combination of Design Patterns

Observer
» Views, Controller notified of Model’s state changes

Strategy
» View can plug in different controllers
» Different views of the same model

Composite

» View is a composite of GUI components

Top-level component learns about model update,
updates components

A container computes its preferred size by combining
all the preferred sizes of its components

Nov 11, 2016 Sprenkle - CSCI209 13

Dependency Inversion Principle

Depend upon

abstractions

Nov 11, 2016 Sprenkle - CSCI209 14

Dependency Inversion Principle

High-level components should not depend on
low-level components
Both should depend on abstractions

Abstractions should not depend upon details.
Details should depend upon abstractions

“Inversion” from the way you think

Nov 11, 2016 Sprenkle - CSCI209 15

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

Nov 11, 2016 Sprenkle - CSCI209 16

FACTORY DESIGN PATTERN

Nov 11, 2016 Sprenkle - CSCI209 17

Design Pattern: Factory Methods

Allows creating objects without specifying exact
(concrete) class of created object

Often used to refer to any method whose main
purpose is creating objects

How it works:
Define a method for creating objects

Child classes override method to specify the derived
type of product that will be created

Nov 11, 2016 Sprenkle - CSCI209 18

Factory Method Pattern

interface

Product

implementation

interface
Creator

factoryMethod()
anOperation()

association implementation

ConcreteProduct

@ ConcreteCreator

UML Class Diagram

Nov 11, 2016

factoryMethod()

Sprenkle - CSCI209 19

Guidelines to Follow DIP

No variable should hold a reference to a concrete

class

» Using hew -2 holding reference to concrete class

» Use factory instead

No class should derive from a concrete class
» Why? Depends on a concrete class
» Derive from an interface or abstract class instead

No method should override an implemented

method of its base class

» Base class wasn’t an abstraction
» Those methods are meant to be shared by child classes

Nov 11, 2016

Sg

What'’s a problem with following
all of these guidelines?

GRAPHICS PROGRAMMING

Nov 11, 2016 Sprenkle - CSCI209

21

Understanding Code

Import existing Java project:
/csdept/local/courses/cs209/handouts/
screensavers.tar.gz

Simple Bouncers
» How draws
» How animates
Screen Savers
» What represents an object in the screen saver?
» How are screen saver objects generated?
» How is animation handled?
» How are events handled?

Nov 11, 2016 Sprenkle - CSCI209

22

Screensavers GUI/Architecture

800 Screen Savers!

ButtonPanel
E JButton: associated with a
Factory that creates Movers

Canvas
Has List of Movers <

Timer: Periodically calls

Canvas’s actionPerformed method,
which repaints screen/Movers,

moves Movers

What does the factory do? Why?
What do you need to do to add screen savers!?

Number of shapes to create

. RangeStider v

Nov 11, 2016 Sprenkle - CSCI209 ' 23

Dependency Inversion Principle

How would you typically build/design the screen
saver application?
» Know we need to view/display a screen saver
Buttons, slider, objects that move

Top-down

» Know we need to create a bunch of types of screen
savers

Abstraction
Bottom-up

Nov 11, 2016 Sprenkle - CSCI209 24

One Option for Screen Saver Design

GUI

[Bouncer] [Walker] [Racer

Violates Dependency Inversion Principle:
High-level component is dependent on concrete classes.
If implementations change, GUI may have to change

Nov 11, 2016 Sprenkle - CSCI209

25

Mapping Factory Design Pattern
to Screen Savers

How does the screen saver application use
factory methods?

What would be the alternative solution?

What problems are the factories addressing?

Nov 11, 2016 Sprenkle - CSCI209

26

Mapping Factory Design Pattern
to Screen Savers

What problems are the factories addressing?
Delegate creation of concrete Movers
Likely to change
Encapsulate change in factory

Using abstraction instead of specifying concrete
classes

Reduces dependencies to concrete classes

Nov 11, 2016 Sprenkle - CSCI209 27

Thoughts

Didn’t need to know design pattern to
understand code

Helps to know the terminology to understand the
naming

Design principles all come down to
where there is change, use abstraction

Nov 11, 2016 Sprenkle - CSCI209 28

Our Screen Saver Dependencies

[ButtonPanel]
[Mover] [Canvas] [Factory]
[Bouncer] [BouncerFactory]

Nov 11, 2016 Sprenkle - CSCI209 29

Our Screen Saver Dependencies

Note: dependencies
are on abstractions

[ButtonPanel] and classes unlikely to

Nnge

[Mover](—[Canvas](—[Factor'y]

=

[Bouncer] [BouncerFactory]

Nov 11, 2016 Sprenkle - CSCI209 30

TODO

Assignment 9 due Wednesday

Nov 11, 2016

Sprenkle - CSCI209

31

