
11/11/16

1

Objec&ves	
• Design	Pa1erns	

Ø Observer	
Ø MVC	

• Dependency	Inversion	Principle	
Ø Factory	design	pa1ern	
Ø Screensavers	

Nov	11,	2016	 Sprenkle	-	CSCI209	 1	

Review	
• What	is	a	design	pa1ern?	
• What	design	pa1erns	did	we	discuss?	

Ø What	design	principle(s)	does	it	follow?	

• Why	do	we	prefer	composi&on	over	inheritance?	
• Any	underlying	commonali&es?	

Nov	11,	2016	 Sprenkle	-	CSCI209	 2	

11/11/16

2

Design	Pa1ern:	Observer	
• Defines	a	1-to-many	dependency	between	
objects	

• When	one	object	changes	state,	all	of	its	
dependents	are	no&fied	and	updated	
automa&cally	

Nov	11,	2016	 Sprenkle	-	CSCI209	 3	

Subject	

Object that
holds state Dependent Objects

Automatic update/
notification Object	

Object	

Object	

Ex: Publisher Ex: Subscribers

Observer	Pa1ern	

Nov	11,	2016	 Sprenkle	-	CSCI209	 4	

Subject
registerObserver()
removeObserver()
notifyObservers()

Observer
update()

ConcreteSubject
registerObserver()
removeObserver()
notifyObservers()
getState()
setState()

ConcreteObserver
update()
//observer-specific
//methods

Have we seen this pattern?

implementation

implementation

association

association

11/11/16

3

Design	Principle:	Loose	Coupling	
• A	principle	behind	Observer	pa1ern	

	
	

• Loosely	coupled	objects	can	interact	but	have	
very	li1le	knowledge	of	each	other	
Ø Minimize	dependency	between	objects	
Ø More	flexible	systems	
Ø Handle	change	

Nov	11,	2016	 Sprenkle	-	CSCI209	 5	

Goal: loosely coupled designs
between objects that interact

MVC	DESIGN	PATTERN	

Nov	11,	2016	 Sprenkle	-	CSCI209	 6	

11/11/16

4

Model	-	Viewer	-	Controller	(MVC)	
• A	common	design	pa?ern	for	GUIs	
• Separate	

Ø Model:	applica&on	data	
Ø View:	graphical	representa&on	
Ø Controller:	input	processing	

Nov	11,	2016	 Sprenkle	-	CSCI209	 7	

Model Controller	 View	
NotifiesModifies

Model-Viewer-Controller	

• Can	have	mul&ple	viewers	and	controllers	
• Goal:	modify	one	component	without	affec&ng	
others	

Nov	11,	2016	 Sprenkle	-	CSCI209	 8	

Model Controller	 View	
NotifiesModifies

Model View

Controller

Direct associations

11/11/16

5

Model	
• Code	that	carries	out	some	task	
• Nothing	about	how	view	presented	to	user	
• Purely	funcBonal	
• Must	be	able	to	register	views	and	no&fy	views	
of	changes	

Nov	11,	2016	 Sprenkle	-	CSCI209	 9	

Model

Mul&ple	Views	
• Provides	GUI	interface	components	of	
model	
Ø Look	&	Feel	of	the	applica&on	

• User	manipulates	view	
Ø Informs	controller	of	change	

• Example	of	mul&ple	views:	
spreadsheet	data	
Ø Rows/columns	in	spreadsheet	
Ø Pie	chart,	bar	chart,	…	

Nov	11,	2016	 Sprenkle	-	CSCI209	 10	

View	
View	
View	

11/11/16

6

Controller(s)	

• Takes	user	input	and	figures	out	what	it	means	
to	the	model	
Ø Makes	decisions	about	behavior	of	model	based	on	
UI	

• Update	model	as	user	interacts	with	view	
Ø Calls	model’s	mutator	methods	

• Views	are	associated	with	controllers	

Nov	11,	2016	 Sprenkle	-	CSCI209	 11	

Controller	Controller	Controller	

Example:	Music	Player		

Nov	11,	2016	 Sprenkle	-	CSCI209	 12	

View	 Controller	

Model

User • Use	interface	
• Ac&ons	go	to	controller	

Controller	
manipulates	

model	
class Player

play()
rip()

export()

Display	is	updated	
“Play new song”

Model	tells	
view	that	state	
has	changed	

•  See the song display
update

• Hear new song playing

Contains state, data,
application logic

Controller asks Player model to
begin playing song

11/11/16

7

MVC:	Combina&on	of	Design	Pa1erns	
• Observer	

Ø Views,	Controller	no&fied	of	Model’s	state	changes	
• Strategy	

Ø View	can	plug	in	different	controllers	
Ø Different	views	of	the	same	model	

• Composite	
Ø View	is	a	composite	of	GUI	components	

• Top-level	component	learns	about	model	update,	
updates	components	

• A	container	computes	its	preferred	size	by	combining	
all	the	preferred	sizes	of	its	components	

Nov	11,	2016	 Sprenkle	-	CSCI209	 13	

Dependency	Inversion	Principle	

Nov	11,	2016	 Sprenkle	-	CSCI209	 14	

Depend upon
abstractions

11/11/16

8

Dependency	Inversion	Principle	

• High-level	components	should	not	depend	on	
low-level	components	
Ø Both	should	depend	on	abstrac&ons	

• Abstrac&ons	should	not	depend	upon	details.		
Details	should	depend	upon	abstrac&ons	

• “Inversion”	from	the	way	you	think	

Nov	11,	2016	 Sprenkle	-	CSCI209	 15	

Depend	upon	abstrac&ons.	
Do	not	depend	upon	concrete	classes.	

Nov	11,	2016	 Sprenkle	-	CSCI209	 16	

11/11/16

9

FACTORY	DESIGN	PATTERN	

Nov	11,	2016	 Sprenkle	-	CSCI209	 17	

Design	Pa1ern:	Factory	Methods	
• Allows	crea&ng	objects	without	specifying	exact	
(concrete)	class	of	created	object		

• Olen	used	to	refer	to	any	method	whose	main	
purpose	is	crea&ng	objects	

• How	it	works:	
1.  Define	a	method	for	crea&ng	objects	
2.  Child	classes	override	method	to	specify	the	derived	

type	of	product	that	will	be	created	

Nov	11,	2016	 Sprenkle	-	CSCI209	 18	

11/11/16

10

Factory	Method	Pa1ern	

Nov	11,	2016	 Sprenkle	-	CSCI209	 19	

Product Creator
factoryMethod()
anOperation()

ConcreteProduct ConcreteCreator
factoryMethod()

UML Class Diagram

association

interface interface

implementationimplementation

Guidelines	to	Follow	DIP	
• No	variable	should	hold	a	reference	to	a	concrete	
class	
Ø Using	new à	holding	reference	to	concrete	class	
Ø Use	factory	instead	

• No	class	should	derive	from	a	concrete	class	
Ø Why?	Depends	on	a	concrete	class	
Ø Derive	from	an	interface	or	abstract	class	instead	

• No	method	should	override	an	implemented	
method	of	its	base	class	
Ø Base	class	wasn’t	an	abstrac&on	
Ø Those	methods	are	meant	to	be	shared	by	child	classes	

Nov	11,	2016	 Sprenkle	-	CSCI209	 20	
What’s a problem with following �

all of these guidelines?

11/11/16

11

GRAPHICS	PROGRAMMING	

Nov	11,	2016	 Sprenkle	-	CSCI209	 21	

Understanding	Code	
	 		
	 		

• Simple	Bouncers	
Ø How	draws	
Ø How	animates	

• Screen	Savers	
Ø What	represents	an	object	in	the	screen	saver?	
Ø How	are	screen	saver	objects	generated?	
Ø How	is	anima&on	handled?	
Ø How	are	events	handled?	

Nov	11,	2016	 Sprenkle	-	CSCI209	 22	

Import existing Java project:
/csdept/local/courses/cs209/handouts/
screensavers.tar.gz

11/11/16

12

Screensavers	GUI/Architecture	

Nov	11,	2016	 Sprenkle	-	CSCI209	 23	

Canvas
Has List of Movers

ButtonPanel

RangeSlider

Timer: Periodically calls �
Canvas’s actionPerformed method,
which repaints screen/Movers, �
moves Movers

JButton: associated with a
Factory that creates Movers

What does the factory do? Why?
What do you need to do to add screen savers?

Dependency	Inversion	Principle	
• How	would	you	typically	build/design	the	screen	
saver	applica&on?	
Ø Know	we	need	to	view/display	a	screen	saver	

• Bu1ons,	slider,	objects	that	move	
• Top-down	

Ø Know	we	need	to	create	a	bunch	of	types	of	screen	
savers	
• Abstrac&on	
• Bo1om-up	

Nov	11,	2016	 Sprenkle	-	CSCI209	 24	

11/11/16

13

One	Op&on	for	Screen	Saver	Design	

Nov	11,	2016	 Sprenkle	-	CSCI209	 25	

Bouncer Walker

GUI

Racer

Violates Dependency Inversion Principle:
High-level component is dependent on concrete classes.

If implementations change, GUI may have to change

Mapping	Factory	Design	Pa1ern	
to	Screen	Savers	
• How	does	the	screen	saver	applica&on	use	
factory	methods?	

• What	would	be	the	alterna&ve	solu&on?	

• What	problems	are	the	factories	addressing?	

Nov	11,	2016	 Sprenkle	-	CSCI209	 26	

11/11/16

14

Mapping	Factory	Design	Pa1ern	
to	Screen	Savers	
• What	problems	are	the	factories	addressing?	

Ø Delegate	crea&on	of	concrete	Movers
• Likely	to	change	
• Encapsulate	change	in	factory	

Ø Using	abstrac&on	instead	of	specifying	concrete	
classes	
• Reduces	dependencies	to	concrete	classes	

Nov	11,	2016	 Sprenkle	-	CSCI209	 27	

Thoughts	
• Didn’t	need	to	know	design	pa1ern	to	
understand	code	
Ø Helps	to	know	the	terminology	to	understand	the	
naming	

• Design	principles	all	come	down	to		
where	there	is	change,	use	abstracBon	

Nov	11,	2016	 Sprenkle	-	CSCI209	 28	

11/11/16

15

Our	Screen	Saver	Dependencies	

Nov	11,	2016	 Sprenkle	-	CSCI209	 29	

Mover Canvas Factory

Bouncer BouncerFactory

ButtonPanel

Our	Screen	Saver	Dependencies	

Nov	11,	2016	 Sprenkle	-	CSCI209	 30	

Mover Canvas Factory

Bouncer BouncerFactory

ButtonPanel

Note: dependencies
are on abstractions

and classes unlikely to
change

11/11/16

16

TODO	
• Assignment	9	due	Wednesday	

Nov	11,	2016	 Sprenkle	-	CSCI209	 31	

